[go: up one dir, main page]

Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix kerasmodel #13232

Open
wants to merge 10 commits into
base: master
Choose a base branch
from
7 changes: 4 additions & 3 deletions export.py
Original file line number Diff line number Diff line change
Expand Up @@ -449,6 +449,7 @@ def transform_fn(data_item):
Quantization transform function.

Extracts and preprocess input data from dataloader item for quantization.

Parameters:
data_item: Tuple with data item produced by DataLoader during iteration
Returns:
Expand Down Expand Up @@ -749,7 +750,7 @@ def export_saved_model(
import tensorflow as tf
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2

from models.tf import TFModel
from models.tf import KerasModel, TFModel

LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
if tf.__version__ > "2.13.1":
Expand All @@ -764,12 +765,12 @@ def export_saved_model(
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
outputs = KerasModel(tf_model, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)(inputs)
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
keras_model.trainable = False
keras_model.summary()
if keras:
keras_model.save(f, save_format="tf")
keras_model.save(str(file).replace(".pt", ".h5"))
else:
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
m = tf.function(lambda x: keras_model(x)) # full model
Expand Down
21 changes: 21 additions & 0 deletions models/tf.py
Original file line number Diff line number Diff line change
Expand Up @@ -652,6 +652,27 @@ def _xywh2xyxy(xywh):
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)


class KerasModel(tf.keras.layers.Layer):
def __init__(self, tf_model, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres):
super(KerasModel, self).__init__()
self.tf_model = tf_model
self.tf_nms = tf_nms
self.agnostic_nms = agnostic_nms
self.topk_per_class = topk_per_class
self.topk_all = topk_all
self.iou_thres = iou_thres
self.conf_thres = conf_thres

def get_config(self):
config = super().get_config()
return config

def call(self, inputs):
return self.tf_model.predict(
inputs, self.tf_nms, self.agnostic_nms, self.topk_per_class, self.topk_all, self.iou_thres, self.conf_thres
)


class AgnosticNMS(keras.layers.Layer):
# TF Agnostic NMS
def call(self, input, topk_all, iou_thres, conf_thres):
Expand Down
1 change: 0 additions & 1 deletion utils/augmentations.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,7 +156,6 @@ def random_perspective(
):
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
# targets = [cls, xyxy]

"""Applies random perspective transformation to an image, modifying the image and corresponding labels."""
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
width = im.shape[1] + border[1] * 2
Expand Down
1 change: 0 additions & 1 deletion utils/callbacks.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,6 @@ def run(self, hook, *args, thread=False, **kwargs):
thread: (boolean) Run callbacks in daemon thread
kwargs: Keyword Arguments to receive from YOLOv5
"""

assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
for logger in self._callbacks[hook]:
if thread:
Expand Down
7 changes: 4 additions & 3 deletions utils/dataloaders.py
Original file line number Diff line number Diff line change
Expand Up @@ -1104,7 +1104,8 @@ def extract_boxes(path=DATASETS_DIR / "coco128"):
def autosplit(path=DATASETS_DIR / "coco128/images", weights=(0.9, 0.1, 0.0), annotated_only=False):
"""Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
Usage: from utils.dataloaders import *; autosplit()
Arguments

Arguments:
path: Path to images directory
weights: Train, val, test weights (list, tuple)
annotated_only: Only use images with an annotated txt file
Expand Down Expand Up @@ -1183,7 +1184,7 @@ class HUBDatasetStats:
"""
Class for generating HUB dataset JSON and `-hub` dataset directory.

Arguments
Arguments:
path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
autodownload: Attempt to download dataset if not found locally

Expand Down Expand Up @@ -1314,7 +1315,7 @@ class ClassificationDataset(torchvision.datasets.ImageFolder):
"""
YOLOv5 Classification Dataset.

Arguments
Arguments:
root: Dataset path
transform: torchvision transforms, used by default
album_transform: Albumentations transforms, used if installed
Expand Down
2 changes: 0 additions & 2 deletions utils/general.py
Original file line number Diff line number Diff line change
Expand Up @@ -518,7 +518,6 @@ def check_font(font=FONT, progress=False):

def check_dataset(data, autodownload=True):
"""Validates and/or auto-downloads a dataset, returning its configuration as a dictionary."""

# Download (optional)
extract_dir = ""
if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)):
Expand Down Expand Up @@ -1023,7 +1022,6 @@ def non_max_suppression(
Returns:
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
"""

# Checks
assert 0 <= conf_thres <= 1, f"Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0"
assert 0 <= iou_thres <= 1, f"Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0"
Expand Down
3 changes: 2 additions & 1 deletion utils/loggers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -350,7 +350,8 @@ class GenericLogger:
"""
YOLOv5 General purpose logger for non-task specific logging
Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...)
Arguments

Arguments:
opt: Run arguments
console_logger: Console logger
include: loggers to include
Expand Down
14 changes: 7 additions & 7 deletions utils/loggers/clearml/clearml_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ def __init__(self, opt, hyp):
- Initialize ClearML Task, this object will capture the experiment
- Upload dataset version to ClearML Data if opt.upload_dataset is True

arguments:
Arguments:
opt (namespace) -- Commandline arguments for this run
hyp (dict) -- Hyperparameters for this run

Expand Down Expand Up @@ -133,7 +133,7 @@ def log_scalars(self, metrics, epoch):
"""
Log scalars/metrics to ClearML.

arguments:
Arguments:
metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...}
epoch (int) iteration number for the current set of metrics
"""
Expand All @@ -145,7 +145,7 @@ def log_model(self, model_path, model_name, epoch=0):
"""
Log model weights to ClearML.

arguments:
Arguments:
model_path (PosixPath or str) Path to the model weights
model_name (str) Name of the model visible in ClearML
epoch (int) Iteration / epoch of the model weights
Expand All @@ -158,7 +158,7 @@ def log_summary(self, metrics):
"""
Log final metrics to a summary table.

arguments:
Arguments:
metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...}
"""
for k, v in metrics.items():
Expand All @@ -168,7 +168,7 @@ def log_plot(self, title, plot_path):
"""
Log image as plot in the plot section of ClearML.

arguments:
Arguments:
title (str) Title of the plot
plot_path (PosixPath or str) Path to the saved image file
"""
Expand All @@ -183,7 +183,7 @@ def log_debug_samples(self, files, title="Debug Samples"):
"""
Log files (images) as debug samples in the ClearML task.

arguments:
Arguments:
files (List(PosixPath)) a list of file paths in PosixPath format
title (str) A title that groups together images with the same values
"""
Expand All @@ -199,7 +199,7 @@ def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_thres
"""
Draw the bounding boxes on a single image and report the result as a ClearML debug sample.

arguments:
Arguments:
image_path (PosixPath) the path the original image file
boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
class_names (dict): dict containing mapping of class int to class name
Expand Down
12 changes: 6 additions & 6 deletions utils/loggers/wandb/wandb_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ def __init__(self, opt, run_id=None, job_type="Training"):
- Upload dataset if opt.upload_dataset is True
- Setup training processes if job_type is 'Training'

arguments:
Arguments:
opt (namespace) -- Commandline arguments for this run
run_id (str) -- Run ID of W&B run to be resumed
job_type (str) -- To set the job_type for this run
Expand Down Expand Up @@ -90,7 +90,7 @@ def setup_training(self, opt):
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
- Setup log_dict, initialize bbox_interval

arguments:
Arguments:
opt (namespace) -- commandline arguments for this run

"""
Expand Down Expand Up @@ -120,7 +120,7 @@ def log_model(self, path, opt, epoch, fitness_score, best_model=False):
"""
Log the model checkpoint as W&B artifact.

arguments:
Arguments:
path (Path) -- Path of directory containing the checkpoints
opt (namespace) -- Command line arguments for this run
epoch (int) -- Current epoch number
Expand Down Expand Up @@ -159,7 +159,7 @@ def log(self, log_dict):
"""
Save the metrics to the logging dictionary.

arguments:
Arguments:
log_dict (Dict) -- metrics/media to be logged in current step
"""
if self.wandb_run:
Expand All @@ -170,7 +170,7 @@ def end_epoch(self):
"""
Commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.

arguments:
Arguments:
best_result (boolean): Boolean representing if the result of this evaluation is best or not
"""
if self.wandb_run:
Expand All @@ -197,7 +197,7 @@ def finish_run(self):

@contextmanager
def all_logging_disabled(highest_level=logging.CRITICAL):
"""source - https://gist.github.com/simon-weber/7853144
"""Source - https://gist.github.com/simon-weber/7853144
A context manager that will prevent any logging messages triggered during the body from being processed.
:param highest_level: the maximum logging level in use.
This would only need to be changed if a custom level greater than CRITICAL is defined.
Expand Down
8 changes: 3 additions & 5 deletions utils/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,6 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=".", names
# Returns
The average precision as computed in py-faster-rcnn.
"""

# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
Expand Down Expand Up @@ -103,7 +102,6 @@ def compute_ap(recall, precision):
# Returns
Average precision, precision curve, recall curve
"""

# Append sentinel values to beginning and end
mrec = np.concatenate(([0.0], recall, [1.0]))
mpre = np.concatenate(([1.0], precision, [0.0]))
Expand Down Expand Up @@ -137,6 +135,7 @@ def process_batch(self, detections, labels):
Return intersection-over-union (Jaccard index) of boxes.

Both sets of boxes are expected to be in (x1, y1, x2, y2) format.

Arguments:
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
labels (Array[M, 5]), class, x1, y1, x2, y2
Expand Down Expand Up @@ -233,7 +232,6 @@ def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7

Input shapes are box1(1,4) to box2(n,4).
"""

# Get the coordinates of bounding boxes
if xywh: # transform from xywh to xyxy
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
Expand Down Expand Up @@ -279,14 +277,15 @@ def box_iou(box1, box2, eps=1e-7):
Return intersection-over-union (Jaccard index) of boxes.

Both sets of boxes are expected to be in (x1, y1, x2, y2) format.

Arguments:
box1 (Tensor[N, 4])
box2 (Tensor[M, 4])

Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
"""

# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
Expand All @@ -304,7 +303,6 @@ def bbox_ioa(box1, box2, eps=1e-7):
box2: np.array of shape(nx4)
returns: np.array of shape(n)
"""

# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
Expand Down
1 change: 0 additions & 1 deletion utils/segment/augmentations.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@ def random_perspective(
):
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
# targets = [cls, xyxy]

"""Applies random perspective, rotation, scale, shear, and translation augmentations to an image and targets."""
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
width = im.shape[1] + border[1] * 2
Expand Down
3 changes: 0 additions & 3 deletions utils/segment/general.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@ def crop_mask(masks, boxes):
- masks should be a size [n, h, w] tensor of masks
- boxes should be a size [n, 4] tensor of bbox coords in relative point form
"""

n, h, w = masks.shape
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
Expand All @@ -33,7 +32,6 @@ def process_mask_upsample(protos, masks_in, bboxes, shape):

return: h, w, n
"""

c, mh, mw = protos.shape # CHW
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0] # CHW
Expand All @@ -51,7 +49,6 @@ def process_mask(protos, masks_in, bboxes, shape, upsample=False):

return: h, w, n
"""

c, mh, mw = protos.shape # CHW
ih, iw = shape
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
Expand Down
3 changes: 1 addition & 2 deletions utils/triton.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,9 @@ class TritonRemoteModel:

def __init__(self, url: str):
"""
Keyword arguments:
Keyword Arguments:
url: Fully qualified address of the Triton server - for e.g. grpc://localhost:8000
"""

parsed_url = urlparse(url)
if parsed_url.scheme == "grpc":
from tritonclient.grpc import InferenceServerClient, InferInput
Expand Down