8000 GitHub - tmacmilan/TensorFlow-Autoencoders: Implementations of autoencoder, generative adversarial networks, variational autoencoder and adversarial variational autoencoder
[go: up one dir, main page]

Skip to content

Implementations of autoencoder, generative adversarial networks, variational autoencoder and adversarial variational autoencoder

Notifications You must be signed in to change notification settings

tmacmilan/TensorFlow-Autoencoders

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
< 8434 span class="prc-TooltipV2-Tooltip-tLeuB" data-direction="s" role="tooltip" aria-hidden="true" id="_R_iqj8pab_">32 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tensorflow-models

Reference implementations for variational autoencoder, autoencoder, generative adversarial network and adversarial variational bayes I implemented in tensorflow.

I managed to get them working for the autoencoder and variational autoencoder using the beautiful class structure described by Danijar here.

Input and reconstructions from the variational autoencoder:

Samples drawn from the latent space of the variational autoencoder and the corresponding reconstructions:

To be done:

  • Adversarial Autoencoder

About

Implementations of autoencoder, generative adversarial networks, variational autoencoder and adversarial variational autoencoder

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
0