About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Create a function for performing a reduction on an input ndarray.
npm install @stdlib/ndarray-base-unary-reduce-strided1d-dispatch-factory
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var unaryStrided1dDispatchFactory = require( '@stdlib/ndarray-base-unary-reduce-strided1d-dispatch-factory' );
Returns a function for performing a reduction on an input ndarray.
var base = require( '@stdlib/stats-base-ndarray-max' );
var table = {
'default': base
};
var dtypes = [ 'float64', 'float32', 'generic' ];
var policies = {
'output': 'same',
'casting': 'none'
};
var unary = unaryStrided1dDispatchFactory( table, [ dtypes ], dtypes, policies );
The function has the following parameters:
-
table: strided reduction function dispatch table. Must have the following properties:
- default: default strided reduction function which should be invoked when provided ndarrays have data types which do not have a corresponding specialized implementation.
A dispatch table may have the following additional properties:
- types: one-dimensional list of ndarray data types describing specialized input ndarray argument signatures. Only the input ndarray argument data types should be specified. Output ndarray and additional input ndarray argument data types should be omitted and are not considered during dispatch. The length of
types
must equal the number of strided functions specified byfcns
(i.e., for every input ndarray data type, there must be a corresponding strided reduction function infcns
). - fcns: list of strided reduction functions which are specific to specialized input ndarray argument signatures.
-
idtypes: list containing lists of supported input data types for each input ndarray argument.
-
odtypes: list of supported output data types.
-
policies: dispatch policies. Must have the following properties:
Performs a reduction on a provided input ndarray.
var ndarray = require( '@stdlib/ndarray-base-ctor' );
var base = require( '@stdlib/stats-base-ndarray-max' );
var table = {
'default': base
};
var dtypes = [ 'float64', 'float32', 'generic' ];
var policies = {
'output': 'same',
'casting': 'none'
};
var unary = unaryStrided1dDispatchFactory( table, [ dtypes ], dtypes, policies );
var xbuf = [ -1.0, 2.0, -3.0 ];
var x = new ndarray( 'generic', xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' );
var y = unary( x );
// returns <ndarray>
var v = y.get();
// returns 2.0
The function has the following parameters:
- x: input ndarray.
- ...args: additional input ndarray arguments (optional).
- options: function options (optional).
The function accepts the following options:
- dims: list of dimensions over which to perform a reduction.
- dtype: output ndarray data type. Setting this option, overrides the output data type policy.
- keepdims: boolean indicating whether the reduced dimensions should be included in the returned ndarray as singleton dimensions. Default:
false
.
By default, the function returns an ndarray having a data type determined by the output data type policy. To override the default behavior, set the dtype
option.
var ndarray = require( '@stdlib/ndarray-base-ctor' );
var base = require( '@stdlib/stats-base-ndarray-max' );
var getDType = require( '@stdlib/ndarray-dtype' );
var table = {
'default': base
};
var dtypes = [ 'float64', 'float32', 'generic' ];
var policies = {
'output': 'same',
'casting': 'none'
};
var unary = unaryStrided1dDispatchFactory( table, [ dtypes ], dtypes, policies );
var xbuf = [ -1.0, 2.0, -3.0 ];
var x = new ndarray( 'generic', xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' );
var y = unary( x, {
'dtype': 'float64'
});
// returns <ndarray>
var dt = getDType( y );
// returns 'float64'
Performs a reduction on a provided input ndarray and assigns results to a provided output ndarray.
var base = require( '@stdlib/stats-base-ndarray-max' );
var dtypes = require( '@stdlib/ndarray-dtypes' );
var ndarray = require( '@stdlib/ndarray-base-ctor' );
var idt = dtypes( 'real_and_generic' );
var odt = idt;
var policies = {
'output': 'same',
'casting': 'none'
};
var table = {
'default': base
};
var unary = unaryStrided1dDispatchFactory( table, [ idt ], odt, policies );
var xbuf = [ -1.0, 2.0, -3.0 ];
var x = new ndarray( 'generic', xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' );
var ybuf = [ 0.0 ];
var y = new ndarray( 'generic', ybuf, [], [ 0 ], 0, 'row-major' );
var out = unary.assign( x, y );
// returns <ndarray>
var v = out.get();
// returns 2.0
var bool = ( out === y );
// returns true
The method has the following parameters:
- x: input ndarray.
- args: additional input ndarray arguments (optional).
- out: output ndarray.
- options: function options (optional).
The method accepts the following options:
- dims: list of dimensions over which to perform a reduction.
-
A strided reduction function should have the following signature:
f( arrays )
where
- arrays: array containing an input ndarray, followed by any additional ndarray arguments.
-
The output data type policy only applies to the function returned by the main function. For the
assign
method, the output ndarray is allowed to have any supported output data type.
var dmax = require( '@stdlib/stats-base-ndarray-dmax' );
var smax = require( '@stdlib/stats-base-ndarray-smax' );
var base = require( '@stdlib/stats-base-ndarray-max' );
var uniform = require( '@stdlib/random-array-uniform' );
var dtypes = require( '@stdlib/ndarray-dtypes' );
var dtype = require( '@stdlib/ndarray-dtype' );
var ndarray2array = require( '@stdlib/ndarray-to-array' );
var ndarray = require( '@stdlib/ndarray-ctor' );
var unaryStrided1dDispatchFactory = require( '@stdlib/ndarray-base-unary-reduce-strided1d-dispatch-factory' );
// Define the supported input and output data types:
var idt = dtypes( 'real_and_generic' );
var odt = dtypes( 'real_and_generic' );
// Define dispatch policies:
var policies = {
'output': 'same',
'casting': 'none'
};
// Define a dispatch table:
var table = {
'types': [
'float64', // input
'float32' // input
],
'fcns': [
dmax,
smax
],
'default': base
};
// Create an interface for performing a reduction:
var max = unaryStrided1dDispatchFactory( table, [ idt ], odt, policies );
// Generate an array of random numbers:
var xbuf = uniform( 100, -1.0, 1.0, {
'dtype': 'generic'
});
// Wrap in an ndarray:
var x = new ndarray( 'generic', xbuf, [ 10, 10 ], [ 10, 1 ], 0, 'row-major' );
// Perform a reduction:
var y = max( x, {
'dims': [ 0 ]
});
// Resolve the output array data type:
var dt = dtype( y );
console.log( dt );
// Print the results:
console.log( ndarray2array( y ) );
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.