About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Test whether at least
n
elements in an ndarray pass a test implemented by a predicate function.
To use in Observable,
someBy = require( 'https://cdn.jsdelivr.net/gh/stdlib-js/ndarray-base-some-by@umd/browser.js' )
To vendor stdlib functionality and avoid installing dependency trees for Node.js, you can use the UMD server build:
var someBy = require( 'path/to/vendor/umd/ndarray-base-some-by/index.js' )
To include the bundle in a webpage,
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/ndarray-base-some-by@umd/browser.js"></script>
If no recognized module system is present, access bundle contents via the global scope:
<script type="text/javascript">
(function () {
window.someBy;
})();
</script>
Tests whether at least n
elements in an ndarray pass a test implemented by a predicate function.
var Float64Array = require( '@stdlib/array-float64' );
var scalar2ndarray = require( '@stdlib/ndarray-from-scalar' );
function predicate( value ) {
return value > 0.0;
}
// Create a data buffer:
var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 0.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
// Define the shape of the input array:
var shape = [ 3, 1, 2 ];
// Define the array strides:
var sx = [ 4, 4, 1 ];
// Define the index offset:
var ox = 0;
// Create the input ndarray-like object:
var x = {
'dtype': 'float64',
'data': xbuf,
'shape': shape,
'strides': sx,
'offset': ox,
'order': 'row-major'
};
// Define the success criterion:
var n = scalar2ndarray( 3, {
'dtype': 'generic'
});
// Test elements:
var out = someBy( [ x, n ], predicate );
// returns true
The function accepts the following arguments:
- arrays: array-like object containing an input ndarray and a zero-dimensional ndarray specifying the minimum number of elements in the input ndarray that must satisfy the predica 8000 te function.
- predicate: predicate function.
- thisArg: predicate function execution context (optional).
Each provided ndarray should be an object
with the following properties:
- dtype: data type.
- data: data buffer.
- shape: dimensions.
- strides: stride lengths.
- offset: index offset.
- order: specifies whether an ndarray is row-major (C-style) or column major (Fortran-style).
The predicate function is provided the following arguments:
- value: current array element.
- indices: current array element indices.
- arr: the input ndarray.
To set the predicate function execution context, provide a thisArg
.
var Float64Array = require( '@stdlib/array-float64' );
var scalar2ndarray = require( '@stdlib/ndarray-from-scalar' );
function predicate( value ) {
this.count += 1;
return value > 0.0;
}
// Create a data buffer:
var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
// Define the shape of the input array:
var shape = [ 3, 1, 2 ];
// Define the array strides:
var sx = [ 4, 4, 1 ];
// Define the index offset:
var ox = 0;
// Create the input ndarray-like object:
var x = {
'dtype': 'float64',
'data': xbuf,
'shape': shape,
'strides': sx,
'offset': ox,
'order': 'row-major'
};
// Define the success criterion:
var n = scalar2ndarray( 6, {
'dtype': 'generic'
});
// Create a context object:
var ctx = {
'count': 0
};
// Test elements:
var out = someBy( [ x, n ], predicate, ctx );
// returns true
var count = ctx.count;
// returns 6
- For very high-dimensional ndarrays which are non-contiguous, one should consider copying the underlying data to contiguous memory before performing the operation in order to achieve better performance.
<!DOCTYPE html>
<html lang="en">
<body>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/random-array-discrete-uniform@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/ndarray-from-scalar@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/ndarray-base-to-array@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/ndarray-base-some-by@umd/browser.js"></script>
<script type="text/javascript">
(function () {
function predicate( value ) {
return value > 0;
}
var x = {
'dtype': 'generic',
'data': discreteUniform( 10, -2, 10, {
'dtype': 'generic'
}),
'shape': [ 5, 2 ],
'strides': [ 2, 1 ],
'offset': 0,
'order': 'row-major'
};
console.log( ndarray2array( x.data, x.shape, x.strides, x.offset, x.order ) );
var n = scalar2ndarray( 5, {
'dtype': 'generic'
});
var out = someBy( [ x, n ], predicate );
console.log( out );
})();
</script>
</body>
</html>
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.