About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in bro 8000 wsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Fill an input ndarray according to a callback function.
import fillBy from 'https://cdn.jsdelivr.net/gh/stdlib-js/ndarray-base-fill-by@deno/mod.js';
Fills an input ndarray according to a callback function.
import Float64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@deno/mod.js';
function fcn( value ) {
return value * 10.0;
}
// Create a data buffer:
var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
// Define the shape of the input array:
var shape = [ 3, 1, 2 ];
// Define the array strides:
var sx = [ 2, 2, 1 ];
// Define the index offset:
var ox = 0;
// Create the input ndarray-like object:
var x = {
'dtype': 'float64',
'data': xbuf,
'shape': shape,
'strides': sx,
'offset': ox,
'order': 'row-major'
};
fillBy( x, fcn );
console.log( x.data );
// => <Float64Array>[ 10.0, 20.0, 30.0, 40.0, 50.0, 60.0 ]
The function accepts the following arguments:
- x: array-like object containing an input ndarray.
- fcn: callback function.
- thisArg: callback function execution context (optional).
To set the callback function execution context, provide a thisArg
.
import Float64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@deno/mod.js';
function fcn( value ) {
return value * this.factor;
}
// Create a data buffer:
var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
// Define the shape of the input array:
var shape = [ 3, 1, 2 ];
// Define the array strides:
var sx = [ 2, 2, 1 ];
// Define the index offset:
var ox = 0;
// Create the input ndarray-like object:
var x = {
'dtype': 'float64',
'data': xbuf,
'shape': shape,
'strides': sx,
'offset': ox,
'order': 'row-major'
};
var ctx = {
'factor': 10.0
};
fillBy( x, fcn, ctx );
console.log( x.data );
// => <Float64Array>[ 10.0, 20.0, 30.0, 40.0, 50.0, 60.0 ]
A provided ndarray should be an object with the following properties:
- dtype: data type.
- data: data buffer.
- shape: dimensions.
- strides: stride lengths.
- offset: index offset.
- order: specifies whether an ndarray is row-major (C-style) or column major (Fortran-style).
The callback function is provided the following arguments:
- value: current array element.
- indices: current array element indices.
- arr: the input ndarray.
- The function mutates the input ndarray.
- The function assumes that each element in the underlying input ndarray data buffer has one, and only one, corresponding element in input ndarray view (i.e., a provided ndarray is not a broadcasted ndarray view).
var discreteUniform = require( 'https://cdn.jsdelivr.net/gh/stdlib-js/random-base-discrete-uniform' ).factory;
import ndarray2array from 'https://cdn.jsdelivr.net/gh/stdlib-js/ndarray-to-array@deno/mod.js';
import zeros from 'https://cdn.jsdelivr.net/gh/stdlib-js/ndarray-zeros@deno/mod.js';
import fillBy from 'https://cdn.jsdelivr.net/gh/stdlib-js/ndarray-base-fill-by@deno/mod.js';
// Create a zero-filled ndarray:
var x = zeros( [ 5, 2 ], {
'dtype': 'generic'
});
console.log( ndarray2array( x ) );
// Fill the ndarray with random values:
fillBy( x, discreteUniform( -100, 100 ) );
console.log( ndarray2array( x ) );
This package is part of stdlib, a standard library with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.