8000 GitHub - stdlib-js/lapack-base-clacgv at deno
[go: up one dir, main page]

Skip to content

Conjugate each element in a single-precision complex floating-point vector.

License

Notifications You must be signed in to change notification settings

stdlib-js/lapack-base-clacgv

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

clacgv

NPM version Build Status Coverage Status

Conjugate each element in a single-precision complex floating-point vector.

Usage

import clacgv from 'https://cdn.jsdelivr.net/gh/stdlib-js/lapack-base-clacgv@deno/mod.js';

clacgv( N, cx, strideCX )

Conjugates each element in a single-precision complex floating-point vector.

import Complex64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-complex64@deno/mod.js';
import realf from 'https://cdn.jsdelivr.net/gh/stdlib-js/complex-float32-real@deno/mod.js';
import imagf from 'https://cdn.jsdelivr.net/gh/stdlib-js/complex-float32-imag@deno/mod.js';

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0 ] );

clacgv( 2, cx, 1 );

var z = cx.get( 0 );
// returns <Complex64>

var re = realf( z );
// returns 1.0

var im = imagf( z );
// returns -2.0

The function has the following parameters:

  • N: number of indexed elements.
  • cx: input Complex64Array.
  • strideCX: stride length for cx.

The N and stride parameters determine which elements in cx are conjugated. For example, to conjugate every other element in cx,

import Complex64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-complex64@deno/mod.js';
import realf from 'https://cdn.jsdelivr.net/gh/stdlib-js/complex-float32-real@deno/mod.js';
import imagf from 'https://cdn.jsdelivr.net/gh/stdlib-js/complex-float32-imag@deno/mod.js';

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );

clacgv( 2, cx, 2 );

var z = cx.get( 0 );
// returns <Complex64>

var re = realf( z );
// returns 1.0

var im = imagf( z );
// returns -2.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

import Complex64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-complex64@deno/mod.js';
import Complex64 from 'https://cdn.jsdelivr.net/gh/stdlib-js/complex-float32-ctor@deno/mod.js';
import realf from 'https://cdn.jsdelivr.net/gh/stdlib-js/complex-float32-real@deno/mod.js';
import imagf from 'https://cdn.jsdelivr.net/gh/stdlib-js/complex-float32-imag@deno/mod.js';

// Initial array:
var cx0 = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );

// Create an offset view:
var cx1 = new Complex64Array( cx0.buffer, cx0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

// Conjugate every element in `cx1`:
clacgv( 3, cx1, 1 );

var z = cx0.get( 1 );
// returns <Complex64>

var re = realf( z );
// returns 3.0

var im = imagf( z );
// returns -4.0

clacgv.ndarray( N, cx, strideCX, offsetCX )

Conjugates each element in a single-precision floating-point vector using alternative indexing semantics.

import Complex64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-complex64@deno/mod.js';
import realf from 'https://cdn.jsdelivr.net/gh/stdlib-js/complex-float32-real@deno/mod.js';
import imagf from 'https://cdn.jsdelivr.net/gh/stdlib-js/complex-float32-imag@deno/mod.js';

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );

clacgv.ndarray( 3, cx, 1, 0 );

var z = cx.get( 0 );
// returns <Complex64>

var re = realf( z );
// 
8000
returns 1.0

var im = imagf( z );
// returns -2.0

The function has the following additional parameters:

  • offsetCX: starting index for cx.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to conjugate every other element in the input strided array starting from the second element,

import Complex64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-complex64@deno/mod.js';
import realf from 'https://cdn.jsdelivr.net/gh/stdlib-js/complex-float32-real@deno/mod.js';
import imagf from 'https://cdn.jsdelivr.net/gh/stdlib-js/complex-float32-imag@deno/mod.js';

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );

clacgv.ndarray( 2, cx, 2, 1 );

var z = cx.get( 3 );
// returns <Complex64>

var re = realf( z );
// returns 7.0

var im = imagf( z );
// returns -8.0

Notes

  • If N <= 0, both functions return cx unchanged.
  • clacgv() corresponds to the LAPACK BLAS-like level 1 routine clacgv.

Examples

import discreteUniform from 'https://cdn.jsdelivr.net/gh/stdlib-js/random-base-discrete-uniform@deno/mod.js';
import filledarrayBy from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-filled-by@deno/mod.js';
import Complex64 from 'https://cdn.jsdelivr.net/gh/stdlib-js/complex-float32-ctor@deno/mod.js';
import clacgv from 'https://cdn.jsdelivr.net/gh/stdlib-js/lapack-base-clacgv@deno/mod.js';

function rand() {
    return new Complex64( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}

var cx = filledarrayBy( 10, 'complex64', rand );
console.log( cx.toString() );

// Conjugate elements:
clacgv( cx.length, cx, 1 );
console.log( cx.get( cx.length-1 ).toString() );

Notice

This package is part of stdlib, a standard library with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2025. The Stdlib Authors.

0