8000 GitHub - stdlib-js/blas-ext-sum: Compute the sum along one or more ndarray dimensions.
[go: up one dir, main page]

Skip to content

stdlib-js/blas-ext-sum

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

sum

NPM version Build Status Coverage Status

Compute the sum along one or more ndarray dimensions.

Installation

npm install @stdlib/blas-ext-sum

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var sum = require( '@stdlib/blas-ext-sum' );

sum( x[, options] )

Computes the sum along one or more ndarray dimensions.

var array = require( '@stdlib/ndarray-array' );

var x = array( [ -1.0, 2.0, -3.0 ] );

var y = sum( x );
// returns <ndarray>

var v = y.get();
// returns -2.0

The function has the following parameters:

  • x: input ndarray. Must have a numeric or "generic" data type.
  • options: function options (optional).

The function accepts the following options:

  • dims: list of dimensions over which to perform a reduction. If not provided, the function performs a reduction over all elements in a provided input ndarray.
  • dtype: output ndarray data type. Must be a numeric or "generic" data type.
  • keepdims: boolean indicating whether the reduced dimensions should be included in the returned ndarray as singleton dimensions. Default: false.

By default, the function performs a reduction over all elements in a provided input ndarray. To perform a reduction over specific dimensions, provide a dims option.

var ndarray2array = require( '@stdlib/ndarray-to-array' );
var array = require( '@stdlib/ndarray-array' );

var x = array( [ -1.0, 2.0, -3.0, 4.0 ], {
    'shape': [ 2, 2 ],
    'order': 'row-major'
});

var v = ndarray2array( x );
// returns [ [ -1.0, 2.0 ], [ -3.0, 4.0 ] ]

var y = sum( x, {
    'dims': [ 0 ]
});
// returns <ndarray>

v = ndarray2array( y );
// returns [ -4.0, 6.0 ]

y = sum( x, {
    'dims': [ 1 ]
});
// returns <ndarray>

v = ndarray2array( y );
// returns [ 1.0, 1.0 ]

y = sum( x, {
    'dims': [ 0, 1 ]
});
// returns <ndarray>

v = y.get();
// returns 2.0

By default, the function excludes reduced dimensions from the output ndarray. To include the reduced dimensions as singleton dimensions, set the keepdims option to true.

var ndarray2array = require( '@stdlib/ndarray-to-array' );
var array = require( '@stdlib/ndarray-array' );

var x = array( [ -1.0, 2.0, -3.0, 4.0 ], {
    'shape': [ 2, 2 ],
    'order': 'row-major'
});

var v = ndarray2array( x );
// returns [ [ -1.0, 2.0 ], [ -3.0, 4.0 ] ]

var y = sum( x, {
    'dims': [ 0 ],
    'keepdims': true
});
// returns <ndarray>

v = ndarray2array( y );
// returns [ [ -4.0, 6.0 ] ]

y = sum( x, {
    'dims': [ 1 ],
    'keepdims': true
});
// returns <ndarray>

v = ndarray2array( y );
// returns [ [ 1.0 ], [ 1.0 ] ]

y = sum( x, {
    'dims': [ 0, 1 ],
    'keepdims': true
});
// returns <ndarray>

v = ndarray2array( y );
// returns [ [ 2.0 ] ]

By default, the function returns an ndarray having a data type determined by the function's output data type policy. To override the default behavior, set the dtype option.

var getDType = require( '@stdlib/ndarray-dtype' );
var array = require( '@stdlib/ndarray-array' );

var x = array( [ -1.0, 2.0, -3.0 ], {
    'dtype': 'generic'
});

var y = sum( x, {
    'dtype': 'float64'
});
// returns <ndarray>

var dt = getDType( y );
// returns 'float64'

sum.assign( x, out[, options] )

Computes the sum along one or more ndarray dimensions and assigns results to a provided output ndarray.

var array = require( '@stdlib/ndarray-array' );
var zeros = require( '@stdlib/ndarray-zeros' );

var x = array( [ -1.0, 2.0, -3.0 ] );
var y = zeros( [] );

var out = sum.assign( x, y );
// returns <ndarray>

var v = out.get();
// returns -2.0

var bool = ( out === y );
// returns true

The method has the following parameters:

  • x: input ndarray. Must have a numeric or generic data type.
  • out: output ndarray.
  • options: function options (optional).

The method accepts the following options:

  • dims: list of dimensions over which to perform a reduction. If not provided, the function performs a reduction over all elements in a provided input ndarray.

Notes

  • Setting the keepdims option to true can be useful when wanting to ensure that the output ndarray is broadcast-compatible with ndarrays having the same shape as the input ndarray.
  • The output data type policy only applies to the main function and specifies that, by default, in order to avoid issues arising from integer overflow, the function must return an ndarray having a data type amenable to accumulation. This means that, for integer data types having small value ranges (e.g., int8, uint8, etc), the main function returns an ndarray having at least a 32-bit integer data type. By default, if an input ndarray has a floating-point data type, the main function returns an ndarray having the same data type. For the assign method, the output ndarray is allowed to have any supported output data type.
  • When summing a large number of lower precision floating-point numbers (e.g., as found in an ndarray having a 'float32' data type), the accumulated numerical error can become significant. In such cases, casting the input ndarray to a higher precision floating-point data type, such as 'float64', prior to computation is advisable.

Examples

var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var getDType = require( '@stdlib/ndarray-dtype' );
var ndarray2array = require( '@stdlib/ndarray-to-array' );
var ndarray = require( '@stdlib/ndarray-ctor' );
var sum = require( '@stdlib/blas-ext-sum' );

// Generate an array of random numbers:
var xbuf = discreteUniform( 25, 0, 20, {
    'dtype': 'generic'
});

// Wrap in an ndarray:
var x = new ndarray( 'generic', xbuf, [ 5, 5 ], [ 5, 1 ], 0, 'row-major' );
console.log( ndarray2array( x ) );

// Perform a reduction:
var y = sum( x, {
    'dims': [ 0 ]
});

// Resolve the output array data type:
var dt = getDType( y );
console.log( dt );

// Print the results:
console.log( ndarray2array( y ) );

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, se 902D e the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2025. The Stdlib Authors.

0