Download text file, Fork me on GitHub or Check out FAQ.
1. Collections: List, Dictionary, Set, Tuple, Range, Enumerate, Iterator, Generator.
2. Types: Type, String, Regular_Exp, Format, Numbers, Combinatorics, Datetime.
3. Syntax: Args, Inline, Closure, Decorator, Class, Duck_Types, Enum, Exceptions.
4. System: Print, Input, Command_Line_Arguments, Open, Path, Command_Execution.
5. Data: CSV, JSON, Pickle, SQLite, Bytes, Struct, Array, MemoryView, Deque.
6. Advanced: Threading, Introspection, Metaprograming, Operator, Eval, Coroutine.
7. Libraries: Progress_Bar, Plot, Table, Curses, Logging, Scraping, Web, Profile,
NumPy, Image, Audio.
if __name__ == '__main__': # Runs main() if file wasn't imported.
main()<list> = <list>[from_inclusive : to_exclusive : ±step_size]<list>.append(<el>) # Or: <list> += [<el>]
<list>.extend(<collection>) # Or: <list> += <collection><list>.sort()
<list>.reverse()
<list> = sorted(<collection>)
<iter> = reversed(<list>)sum_of_elements = sum(<collection>)
elementwise_sum = [sum(pair) for pair in zip(list_a, list_b)]
sorted_by_second = sorted(<collection>, key=lambda el: el[1])
sorted_by_both = sorted(<collection>, key=lambda el: (el[1], el[0]))
flatter_list = list(itertools.chain.from_iterable(<list>))
product_of_elems = functools.reduce(lambda out, x: out * x, <collection>)
list_of_chars = list(<str>)index = <list>.index(<el>) # Returns index of first occurrence or raises ValueError.
<list>.insert(index, <el>) # Inserts item at index and moves the rest to the right.
<el> = <list>.pop([index]) # Removes and returns item at index or from the end.
<list>.remove(<el>) # Removes first occurrence of item or raises ValueError.
<list>.clear() # Removes all items. Also works on dict and set.<view> = <dict>.keys() # Coll. of keys that reflects changes.
<view> = <dict>.values() # Coll. of values that reflects changes.
<view> = <dict>.items() # Coll. of key-value tuples.value = <dict>.get(key, default=None) # Returns default if key does not exist.
value = <dict>.setdefault(key, default=None) # Same, but also adds default to dict.
<dict> = collections.defaultdict(<type>) # Creates a dict with default value of type.
<dict> = collections.defaultdict(lambda: 1) # Creates a dict with default value 1.<dict>.update(<dict>)
<dict> = dict(<collection>) # Creates a dict from coll. of key-value pairs.
<dict> = dict(zip(keys, values)) # Creates a dict from two collections.
<dict> = dict.fromkeys(keys [, value]) # Creates a dict from collection of keys.value = <dict>.pop(key) # Removes item from dictionary.
{k: v for k, v in <dict>.items() if k in keys} # Filters dictionary by keys.>>> from collections import Counter
>>> colors = ['red', 'blue', 'yellow', 'blue', 'red', 'blue']
>>> counter = Counter(colors)
Counter({'blue': 3, 'red': 2, 'yellow': 1})
>>> counter.most_common()[0]
('blue', 3)<set> = set()<set>.add(<el>) # Or: <set> |= {<el>}
<set>.update(<collection>) # Or: <set> |= <set><set> = <set>.union(<coll.>) # Or: <set> | <set>
<set> = <set>.intersection(<coll.>) # Or: <set> & <set>
<set> = <set>.difference(<coll.>) # Or: <set> - <set>
<set> = <set>.symmetric_difference(<coll.>) # Or: <set> ^ <set>
<bool> = <set>.issubset(<coll.>) # Or: <set> <= <set>
<bool> = <set>.issuperset(<coll.>) # Or: <set> >= <set><set>.remove(<el>) # Raises KeyError.
<set>.discard(<el>) # Doesn't raise an error.- Is immutable and hashable.
- That means it can be used as a key in a dictionary or as an element in a set.
<frozenset> = frozenset(<collection>)Tuple is an immutable and hashable list.
<tuple> = ()
<tuple> = (<el>, )
<tuple> = (<el_1>, <el_2>, ...)Tuple's subclass with named elements.
>>> from collections import namedtuple
>>> Point = namedtuple('Point', 'x y')
>>> p = Point(1, y=2)
Point(x=1, y=2)
>>> p[0]
1
>>> p.x
1
>>> getattr(p, 'y')
2
>>> p._fields # Or: Point._fields
('x', 'y')<range> = range(to_exclusive)
<range> = range(from_inclusive, to_exclusive)
<range> = range(from_inclusive, to_exclusive, ±step_size)from_inclusive = <range>.start
to_exclusive = <range>.stopfor i, el in enumerate(<collection> [, i_start]):
...<iter> = iter(<collection>) # Calling `iter(<iter>)` returns unmodified iterator.
<iter> = iter(<function>, to_exclusive) # Sequence of return values until 'to_exclusive'.
<el> = next(<iter> [, default]) # Raises StopIteration or returns 'default' on end.from itertools import count, repeat, cycle, chain, islice<iter> = count(start=0, step=1) # Returns incremented value endlessly.
<iter> = repeat(<el> [, times]) # Returns element endlessly or 'times' times.
<iter> = cycle(<collection>) # Repeats the sequence indefinitely.<iter> = chain(<coll.>, <coll.> [, ...]) # Empties collections in order.
<iter> = chain.from_iterable(<collection>) # Empties collections inside a collection in order.<iter> = islice(<collection>, to_exclusive)
<iter> = islice(<collection>, from_inclusive, to_exclusive)
<iter> = islice(<collection>, from_inclusive, to_exclusive, +step_size)- Convenient way to implement the iterator protocol.
- Any function that contains a yield statement returns a generator object.
- Generators and iterators are interchangeable.
def count(start, step):
while True:
yield start
start += step>>> counter = count(10, 2)
>>> next(counter), next(counter), next(counter)
(10, 12, 14)- Everything is an object.
- Every object has a type.
- Type and class are synonymous.
<type> = type(<el>) # Or: <el>.__class__
<bool> = isinstance(<el>, <type>) # Or: issubclass(type(<el>), <type>)>>> type('a'), 'a'.__class__, str
(<class 'str'>, <class 'str'>, <class 'str'>)from types import FunctionType, MethodType, LambdaType, GeneratorTypeAn abstract base class introduces virtual subclasses, that don’t inherit from it but are still recognized by isinstance() and issubclass().
>>> from collections.abc import Sequence, Collection, Iterable
>>> isinstance([1, 2, 3], Iterable)
True+------------------+----------+------------+----------+
| | Sequence | Collection | Iterable |
+------------------+----------+------------+----------+
| list, range, str | yes | yes | yes |
| dict, set | | yes | yes |
| iter | | | yes |
+------------------+----------+------------+----------+
>>> from numbers import Integral, Rational, Real, Complex, Number
>>> isinstance(123, Number)
True+--------------------+----------+----------+------+---------+--------+
| | Integral | Rational | Real | Complex | Number |
+--------------------+----------+----------+------+---------+--------+
| int | yes | yes | yes | yes | yes |
| fractions.Fraction | | yes | yes | yes | yes |
| float | | | yes | yes | yes |
| complex | | | | yes | yes |
+--------------------+----------+----------+------+---------+--------+
<str> = <str>.strip() # Strips all whitespace characters from both ends.
<str> = <str>.strip('<chars>') # Strips all passed characters from both ends.<list> = <str>.split() # Splits on one or more whitespace characters.
<list> = <str>.split(sep=None, maxsplit=-1) # Splits on 'sep' str at most 'maxsplit' times.
<list> = <str>.splitlines(keepends=False) # Splits on line breaks. Keeps them if 'keepends'.
<str> = <str>.join(<coll_of_strings>) # Joins elements using string as separator.<bool> = <sub_str> in <str> # Checks if string contains a substring.
<bool> = <str>.startswith(<sub_str>) # Pass tuple of strings for multiple options.
<bool> = <str>.endswith(<sub_str>) # Pass tuple of strings for multiple options.
<int> = <str>.find(<sub_str>) # Returns start index of first match or -1.
<int> = <str>.index(<sub_str>) # Same but raises ValueError.<str> = <str>.replace(old, new [, count]) # Replaces 'old' with 'new' at most 'count' times.
<bool> = <str>.isnumeric() # True if str contains only numeric characters.
<list> = textwrap.wrap(<str>, width) # Nicely breaks string into lines.- Also:
'lstrip()','rstrip()'. - Also:
'lower()','upper()','capitalize()'and'title()'.
<str> = chr(<int>) # Converts int to unicode char.
<int> = ord(<str>) # Converts unicode char to int.>>> ord('0'), ord('9')
(48, 57)
>>> ord('A'), ord('Z')
(65, 90)
>>> ord('a'), ord('z')
(97, 122)import re
<str> = re.sub(<regex>, new, text, count=0) # Substitutes all occurrences.
<list> = re.findall(<regex>, text) # Returns all occurrences.
<list> = re.split(<regex>, text, maxsplit=0) # Use brackets in regex to keep the matches.
<Match> = re.search(<regex>, text) # Searches for first occurrence of pattern.
<Match> = re.match(<regex>, text) # Searches only at the beginning of the text.
<iter> = re.finditer(<regex>, text) # Returns all occurrences as match objects.- Argument
'flags=re.IGNORECASE'can be used with all functions. - Argument
'flags=re.MULTILINE'makes'^'and'$'match the start/end of each line. - Argument
'flags=re.DOTALL'makes dot also accept newline. - Use
r'\1'or'\\1'for backreference. - Use
'?'to make an operator non-greedy.
<str> = <Match>.group() # Whole match. Also group(0).
<str> = <Match>.group(1) # Part in first bracket.
<tuple> = <Match>.groups() # All bracketed parts.
<int> = <Match>.start() # Start index of a match.
<int> = <Match>.end() # Exclusive end index of a match.- By default digits, whitespaces and alphanumerics from all alphabets are matched, unless
'flags=re.ASCII'argument is used. - Use capital letters for negation.
'\d' == '[0-9]' # Digit
'\s' == '[ \t\n\r\f\v]' # Whitespace
'\w' == '[a-zA-Z0-9_]' # Alphanumeric<str> = f'{<el_1>}, {<el_2>}'
<str> = '{}, {}'.format(<el_1>, <el_2>)>>> from collections import namedtuple
>>> Person = namedtuple('Person', 'name height')
>>> person = Person('Jean-Luc', 187)
>>> f'{person.height}'
'187'
>>> '{p.height}'.format(p=person)
'187'{<el>:<10} # '<el> '
{<el>:^10} # ' <el> '
{<el>:>10} # ' <el>'{<el>:.<10} # '<el>......'
{<el>:>0} # '<el>''!r' calls object's repr() method, instead of str(), to get a string.
{'abcde'!r:<10} # "'abcde' "
{'abcde':.3} # 'abc'
{'abcde':10.3} # 'abc '{ 123456:10,} # ' 123,456'
{ 123456:10_} # ' 123_456'
{ 123456:+10} # ' +123456'
{-123456:=10} # '- 123456'
{ 123456: } # ' 123456'
{-123456: } # '-123456'{1.23456:10.3} # ' 1.23'
{1.23456:10.3f} # ' 1.235'
{1.23456:10.3e} # ' 1.235e+00'
{1.23456:10.3%} # ' 123.456%'+----------------+----------------+---------------+----------------+-----------------+
| | {<float>} | {<float>:f} | {<float>:e} | {<float>:%} |
+----------------+----------------+---------------+----------------+-----------------+
| 0.000056789 | '5.6789e-05' | '0.000057' | '5.678900e-05' | '0.005679%' |
| 0.00056789 | '0.00056789' | '0.000568' | '5.678900e-04' | '0.056789%' |
| 0.0056789 | '0.0056789' | '0.005679' | '5.678900e-03' | '0.567890%' |
| 0.056789 | '0.056789' | '0.056789' | '5.678900e-02' | '5.678900%' |
| 0.56789 | '0.56789' | '0.567890' | '5.678900e-01' | '56.789000%' |
| 5.6789 | '5.6789' | '5.678900' | '5.678900e+00' | '567.890000%' |
| 56.789 | '56.789' | '56.789000' | '5.678900e+01' | '5678.900000%' |
| 567.89 | '567.89' | '567.890000' | '5.678900e+02' | '56789.000000%' |
+----------------+----------------+---------------+----------------+-----------------+
+----------------+----------------+---------------+----------------+-----------------+
| | {<float>:.2} | {<float>:.2f} | {<float>:.2e} | {<float>:.2%} |
+----------------+----------------+---------------+----------------+-----------------+
| 0.000056789 | '5.7e-05' | '0.00' | '5.68e-05' | '0.01%' |
| 0.00056789 | '0.00057' | '0.00' | '5.68e-04' | '0.06%' |
| 0.0056789 | '0.0057' | '0.01' | '5.68e-03' | '0.57%' |
| 0.056789 | '0.057' | '0.06' | '5.68e-02' | '5.68%' |
| 0.56789 | '0.57' | '0.57' | '5.68e-01' | '56.79%' |
| 5.6789 | '5.7' | '5.68' | '5.68e+00' | '567.89%' |
| 56.789 | '5.7e+01' | '56.79' | '5.68e+01' | '5678.90%' |
| 567.89 | '5.7e+02' | '567.89' | '5.68e+02' | '56789.00%' |
+----------------+----------------+---------------+----------------+-----------------+
{90:c} # 'Z'
{90:X} # '5A'
{90:b} # '1011010'<int> = int(<float/str/bool>) # Or: math.floor(<float>)
<float> = float(<int/str/bool>)
<complex> = complex(real=0, imag=0) # Or: <real> + <real>j
<Fraction> = fractions.Fraction(numerator=0, denominator=1)'int(<str>)'and'float(<str>)'raise ValueError on malformed strings.
<num> = pow(<num>, <num>) # Or: <num> ** <num>
<real> = abs(<num>)
<int> = round(<real>)
<real> = round(<real>, ±ndigits) # `round(126, -1) == 130`from math import e, pi, inf, nan
from math import cos, acos, sin, asin, tan, atan
D67A
, degrees, radians
from math import log, log10, log2from statistics import mean, median, variance, pvariance, pstdevfrom random import random, randint, choice, shuffle
<float> = random()
<int> = randint(from_inclusive, to_inclusive)
<el> = choice(<list>)
shuffle(<list>)<int> = 0b<bin> # Or: 0x<hex>
<int> = int('0b<bin>', 0) # Or: int('0x<hex>', 0)
<int> = int('<bin>', 2) # Or: int('<hex>', 16)
'0b<bin>' = bin(<int>) # Or: '0x<hex>' = hex(<int>)<int> = <int> & <int> # And
<int> = <int> | <int> # Or
<int> = <int> ^ <int> # Xor (0 if both bits equal)
<int> = <int> << n_bits # Shift left
<int> = <int> >> n_bits # Shift right
<int> = ~<int> # Compliment (flips bits)- Every function returns an iterator.
- If you want to print the iterator, you need to pass it to the list() function!
from itertools import product, combinations, combinations_with_replacement, permutations>>> product([0, 1], repeat=3)
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)]>>> product('ab', '12')
[('a', '1'), ('a', '2'),
('b', '1'), ('b', '2')]>>> combinations('abc', 2)
[('a', 'b'), ('a', 'c'), ('b', 'c')]>>> combinations_with_replacement('abc', 2)
[('a', 'a'), ('a', 'b'), ('a', 'c'),
('b', 'b'), ('b', 'c'),
('c', 'c')]>>> permutations('abc', 2)
[('a', 'b'), ('a', 'c'),
('b', 'a'), ('b', 'c'),
('c', 'a'), ('c', 'b')]- Module 'datetime' provides 'date'
<D>, 'time'<T>, 'datetime'<DT>and 'timedelta'<TD>classes. All are immutable and hashable. - Time and datetime can be 'aware'
<a>, meaning they have defined timezone, or 'naive'<n>, meaning they don't. - If object is naive it is presumed to be in system's timezone.
from datetime import date, time, datetime, timedelta
from dateutil.tz import UTC, tzlocal, gettz<D> = date(year, month, day)
<T> = time(hour=0, minute=0, second=0, microsecond=0, tzinfo=None, fold=0)
<DT> = datetime(year, month, day, hour=0, minute=0, second=0, ...)
<TD> = timedelta(days=0, seconds=0, microseconds=0, milliseconds=0,
minutes=0, hours=0, weeks=0)- Use
'<D/DT>.weekday()'to get the day of the week (Mon == 0). 'fold=1'means second pass in case of time jumping back for one hour.
<D/DTn> = D/DT.today() # Current local date or naive datetime.
<DTn> = DT.utcnow() # Naive datetime from current UTC time.
<DTa> = DT.now(<tzinfo>) # Aware datetime from current tz time.- To extract time use
'<DTn>.time()','<DTa>.time()'or'<DTa>.timetz()'.
<tzinfo> = UTC # UTC timezone. London without DST.
<tzinfo> = tzlocal() # Local timezone. Also gettz().
<tzinfo> = gettz('<Cont.>/<City>') # Timezone from 'Continent/City_Name' str.<DTa> = <DT>.astimezone(<tzinfo>) # Datetime, converted to passed timezone.
<Ta/DTa> = <T/DT>.replace(tzinfo=<tzinfo>) # Unconverted object with new timezone.<D/T/DT> = D/T/DT.fromisoformat('<iso>') # Object from ISO string.
<DT> = DT.strptime(<str>, '<format>') # Datetime from str, according to format.
<D/DTn> = D/DT.fromordinal(<int>) # D/DTn from days since Christ, at midnight.
<DTn> = DT.fromtimestamp(<real>) # Local time DTn from seconds since Epoch.
<DTa> = DT.fromtimestamp(<real>, <tz.>) # Aware datetime from seconds since Epoch.- ISO strings come in following forms:
'YYYY-MM-DD','HH:MM:SS.ffffff[±<offset>]', or both separated by'T'. Offset is formatted as:'HH:MM'. - On Unix systems Epoch is
'1970-01-01 00:00 UTC','1970-01-01 01:00 CET', ...
<str> = <D/T/DT>.isoformat() # ISO string representation.
<str> = <D/T/DT>.strftime('<format>') # Custom string representation.
<int> = <D/DT>.toordinal() # Days since Christ, ignoring time and tz.
<float> = <DTn>.timestamp() # Seconds since Epoch from DTn in local time.
<float> = <DTa>.timestamp() # Seconds since Epoch from DTa.>>> from datetime import datetime
>>> dt = datetime.strptime('2015-05-14 23:39:00.00 +0200', '%Y-%m-%d %H:%M:%S.%f %z')
>>> dt.strftime("%A, %dth of %B '%y, %I:%M%p %Z")
"Thursday, 14th of May '15, 11:39PM UTC+02:00"- For abbreviated weekday and month use
'%a'and'%b'. - When parsing,
'%z'also accepts'±HH:MM'.
<D/DT> = <D/DT> ± <TD>
<TD> = <TD> ± <TD>
<TD> = <TD> */ <real>
<float> = <TD> / <TD><function>(<positional_args>) # f(0, 0)
<function>(<keyword_args>) # f(x=0, y=0)
<function>(<positional_args>, <keyword_args>) # f(0, y=0)def f(<nondefault_args>): # def f(x, y):
def f(<default_args>): # def f(x=0, y=0):
def f(<nondefault_args>, <default_args>): # def f(x, y=0):Splat expands a collection into positional arguments, while splatty-splat expands a dictionary into keyword arguments.
args = (1, 2)
kwargs = {'x': 3, 'y': 4, 'z': 5}
func(*args, **kwargs)func(1, 2, x=3, y=4, z=5)Splat combines zero or more positional arguments into a tuple, while splatty-splat combines zero or more keyword arguments into a dictionary.
def add(*a):
return sum(a)>>> add(1, 2, 3)
6def f(x, y, z): # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3) | f(1, 2, 3)
def f(*, x, y, z): # f(x=1, y=2, z=3)
def f(x, *, y, z): # f(x=1, y=2, z=3) | f(1, y=2, z=3)
def f(x, y, *, z): # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3)def f(*args): # f(1, 2, 3)
def f(x, *args): # f(1, 2, 3)
def f(*args, z): # f(1, 2, z=3)
def f(x, *args, z): # f(1, 2, z=3)def f(**kwargs): # f(x=1, y=2, z=3)
def f(x, **kwargs): # f(x=1, y=2, z=3) | f(1, y=2, z=3)
def f(*, x, **kwargs): # f(x=1, y=2, z=3)def f(*args, **kwargs): # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3) | f(1, 2, 3)
def f(x, *args, **kwargs): # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3) | f(1, 2, 3)
def f(*args, y, **kwargs): # f(x=1, y=2, z=3) | f(1, y=2, z=3)
def f(x, *args, z, **kwargs): # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3)<list> = [*<collection> [, ...]]
<set> = {*<collection> [, ...]}
<tuple> = (*<collection>, [...])
<dict> = {**<dict> [, ...]}head, *body, tail = <collection><function> = lambda: <return_value>
<function> = lambda <argument_1>, <argument_2>: <return_value><list> = [i+1 for i in range(10)] # [1, 2, ..., 10]
<set> = {i for i in range(10) if i > 5} # {6, 7, 8, 9}
<iter> = (i+5 for i in range(10)) # (5, 6, ..., 14)
<dict> = {i: i*2 for i in range(10)} # {0: 0, 1: 2, ..., 9: 18}out = [i+j for i in range(10) for j in range(10)]out = []
for i in range(10):
D67A
for j in range(10):
out.append(i+j)from functools import reduce
<iter> = map(lambda x: x + 1, range(10)) # (1, 2, ..., 10)
<iter> = filter(lambda x: x > 5, range(10)) # (6, 7, 8, 9)
<int> = reduce(lambda out, x: out + x, range(10)) # 45<bool> = any(<collection>) # False if empty.
<bool> = all(el[1] for el in <collection>) # True if empty.<expression_if_true> if <condition> else <expression_if_false>>>> [a if a else 'zero' for a in (0, 1, 0, 3)]
['zero', 1, 'zero', 3]from collections import namedtuple
Point = namedtuple('Point', 'x y')
point = Point(0, 0)from enum import Enum
Direction = Enum('Direction', 'n e s w')
direction = Direction.nfrom dataclasses import make_dataclass
Creature = make_dataclass('Creature', ['location', 'direction'])
creature = Creature(Point(0, 0), Direction.n)We have a closure in Python when:
- A nested function references a value of its enclosing function and then
- the enclosing function returns the nested function.
def get_multiplier(a):
def out(b):
return a * b
return out>>> multiply_by_3 = get_multiplier(3)
>>> multiply_by_3(10)
30- If multiple nested functions within enclosing function reference the same value, that value gets shared.
- To dynamically access function's first free variable use
'<function>.__closure__[0].cell_contents'.
from functools import partial
<function> = partial(<function> [, <arg_1>, <arg_2>, ...])>>> import operator as op
>>> multiply_by_3 = partial(op.mul, 3)
>>> multiply_by_3(10)
30- Partial is also useful in cases when a function needs to be passed as an argument, because it enables us to set its arguments beforehand.
- A few examples being
'defaultdict(<function>)','iter(<function>, to_exclusive)'and dataclass's'field(default_factory=<function>)'.
If variable is being assigned to anywhere in the scope, it is regarded as a local variable, unless it is declared as a 'global' or a 'nonlocal'.
def get_counter():
i = 0
def out():
nonlocal i
i += 1
return i
return out>>> counter = get_counter()
>>> counter(), counter(), counter()
(1, 2, 3)A decorator takes a function, adds some functionality and returns it.
@decorator_name
def function_that_gets_passed_to_decorator():
...Decorator that prints function's name every time it gets called.
from functools import wraps
def debug(func):
@wraps(func)
def out(*args, **kwargs):
print(func.__name__)
return func(*args, **kwargs)
return out
@debug
def add(x, y):
return x + y- Wraps is a helper decorator that copies metadata of function add() to function out().
- Without it
'add.__name__'would return'out'.
Decorator that caches function's return values. All function's arguments must be hashable.
from functools import lru_cache
@lru_cache(maxsize=None)
def fib(n):
return n if n < 2 else fib(n-2) + fib(n-1)- Recursion depth is limited to 1000 by default. To increase it use
'sys.setrecursionlimit(<depth>)'.
A decorator that accepts arguments and returns a normal decorator that accepts a function.
from functools import wraps
def debug(print_result=False):
def decorator(func):
@wraps(func)
def out(*args, **kwargs):
result = func(*args, **kwargs)
print(func.__name__, result if print_result else '')
return result
return out
return decorator
@debug(print_result=True)
def add(x, y):
return x + yclass <name>:
def __init__(self, a):
self.a = a
def __repr__(self):
class_name = self.__class__.__name__
return f'{class_name}({self.a!r})'
def __str__(self):
return str(self.a)
@classmethod
def get_class_name(cls):
return cls.__name__- Return value of repr() should be unambiguous and of str() readable.
- If only repr() is defined, it will be also used for str().
print(<el>)
print(f'{<el>}')
raise Exception(<el>)
logging.debug(<el>)
csv.writer(<file>).writerow([<el>])print([<el>])
print(f'{<el>!r}')
>>> <el>
loguru.logger.exception()
Z = dataclasses.make_dataclass('Z', ['a']); print(Z(<el>))class <name>:
def __init__(self, a=None):
self.a = aclass Person:
def __init__(self, name, age):
self.name = name
self.age = age
class Employee(Person):
def __init__(self, name, age, staff_num):
super().__init__(name, age)
self.staff_num = staff_numclass A: pass
class B: pass
class C(A, B): passMRO determines the order in which parent classes are traversed when searching for a method:
>>> C.mro()
[<class 'C'>, <class 'A'>, <class 'B'>, <class 'object'>]class MyClass:
@property
def a(self):
return self._a
@a.setter
def a(self, value):
self._a = value>>> el = MyClass()
>>> el.a = 123
>>> el.a
123Decorator that automatically generates init(), repr() and eq() special methods.
from dataclasses import dataclass, field
@dataclass(order=False, frozen=False)
class <class_name>:
<attr_name_1>: <type>
<attr_name_2>: <type> = <default_value>
<attr_name_3>: list/dict/set = field(default_factory=list/dict/set)- An object can be made sortable with
'order=True'or immutable with'frozen=True'. - Function field() is needed because
'<attr_name>: list = []'would make a list that is shared among all instances. - Default_factory can be any callable.
Mechanism that restricts objects to attributes listed in 'slots' and significantly reduces their memory footprint.
class MyClassWithSlots:
__slots__ = ['a']
def __init__(self):
self.a = 1from copy import copy, deepcopy
<object> = copy(<object>)
<object> = deepcopy(<object>)A duck type is an implicit type that prescribes a set of special methods. Any object that has those methods defined is considered a member of that duck type.
- If eq() method is not overridden, it returns
'id(self) == id(other)', which is the same as'self is other'. - That means all objects compare not equal by default.
- Only left side object has eq() method called, unless it returns 'NotImplemented', in which case the right object is consulted.
class MyComparable:
def __init__(self, a):
self.a = a
def __eq__(self, other):
if isinstance(other, type(self)):
return self.a == other.a
return NotImplemented- Hashable object needs both hash() and eq() methods and its hash value should never change.
- Hashable objects that compare equal must have the same hash value, meaning default hash() that returns
'id(self)'will not do. - That is why Python automatically makes classes unhashable if you only implement eq().
class MyHashable:
def __init__(self, a):
self._a = copy.deepcopy(a)
@property
def a(self):
return self._a
def __eq__(self, other):
if isinstance(other, type(self)):
return self.a == other.a
return NotImplemented
def __hash__(self):
return hash(self.a)- With 'total_ordering' decorator you only need to provide eq() and one of lt(), gt(), le() or ge() special methods.
from functools import total_ordering
@total_ordering
class MySortable:
def __init__(self, a):
self.a = a
def __eq__(self, other):
if isinstance(other, type(self)):
return self.a == other.a
return NotImplemented
def __lt__(self, other):
if isinstance(other, type(self)):
return self.a < other.a
return NotImplemented- Next() should return next item or raise 'StopIteration'.
- Iter() should return 'self'.
class Counter:
def __init__(self):
self.i = 0
def __next__(self):
self.i += 1
return self.i
def __iter__(self):
return self>>> counter = Counter()
>>> next(counter), next(counter), next(counter)
(1, 2, 3)class Counter:
def __init__(self):
self.i = 0
def __call__(self):
self.i += 1
return self.i>>> counter = Counter()
>>> counter(), counter(), counter()
(1, 2, 3)class MyOpen():
def __init__(self, filename):
self.filename = filename
def __enter__(self):
self.file = open(self.filename)
return self.file
def __exit__(self, *args):
self.file.close()>>> with open('test.txt', 'w') as file:
... file.write('Hello World!')
>>> with MyOpen('test.txt') as file:
... print(file.read())
Hello World!with open('<path>') as file: ...
with wave.open('<path>') as wave_file: ...
with memoryview(<bytes/bytearray/array>) as view: ...
db = sqlite3.connect('<path>'); with db: db.execute('<insert_query>')
lock = threading.RLock(); with lock: ...- Only required method is iter(). It should return an iterator of object's items.
- Contains() automatically works on any object that has iter() defined.
class MyIterable:
def __init__(self, a):
self.a = a
def __iter__(self):
for el in self.a:
yield el>>> a = MyIterable([1, 2, 3])
>>> iter(a)
<generator object MyIterable.__iter__ at 0x1026c18b8>
>>> 1 in a
True- Only required methods are iter() and len().
- This cheatsheet actually means
'<iterable>'when it uses'<collection>'. - I chose not to use the name 'iterable' because it sounds scarier and more vague than 'collection'.
class MyCollection:
def __init__(self, a):
self.a = a
def __iter__(self):
return iter(self.a)
def __contains__(self, el):
return el in self.a
def __len__(self):
return len(self.a)- Only required methods are len() and getitem().
- Getitem() should return an item at index or raise 'IndexError'.
- Iter() and contains() automatically work on any object that has getitem() defined.
- Reversed() automatically works on any object that has getitem() and len() defined.
class MySequence:
def __init__(self, a):
self.a = a
def __iter__(self):
return iter(self.a)
def __contains__(self, el):
return el in self.a
def __len__(self):
return len(self.a)
def __getitem__(self, i):
return self.a[i]
def __reversed__(self):
return reversed(self.a)- It's a richer interface than the basic sequence.
- Extending it generates iter(), contains(), reversed(), index(), and count().
- Unlike
'abc.Iterable'and'abc.Collection', it is not a duck type. That is why'issubclass(MySequence, collections.abc.Sequence)'would return 'False' even if 'MySequence' had all the methods defined.
class MyAbcSequence(collections.abc.Sequence):
def __init__(self, a):
self.a = a
def __len__(self):
return len(self.a)
def __getitem__(self, i):
return self.a[i]+------------+----------+------------+----------+--------------+
| | Iterable | Collection | Sequence | abc.Sequence |
+------------+----------+------------+----------+--------------+
| iter() | REQ | REQ | yes | yes |
| contains() | yes | yes | yes | yes |
| len() | | REQ | REQ | REQ |
| getitem() | | | REQ | REQ |
| reversed() | | | yes | yes |
| index() | | | | yes |
| count() | | | | yes |
+------------+----------+------------+----------+--------------+
- Other useful ABCs that automatically generate missing methods are: MutableSequence, Set, MutableSet, Mapping and MutableMapping.
from enum import Enum, auto
class <enum_name>(Enum):
<member_name_1> = <value_1>
<member_name_2> = <value_2_a>, <value_2_b>
<member_name_3> = auto()
@classmethod
def get_member_names(cls):
return [a.name for a in cls.__members__.values()]- If there are no numeric values before auto(), it returns 1.
- Otherwise it returns an increment of last numeric value.
<member> = <enum>.<member_name>
<member> = <enum>['<member_name>']
<member> = <enum>(<value>)
name = <member>.name
value = <member>.valuelist_of_members = list(<enum>)
member_names = [a.name for a in <enum>]
member_values = [a.value for a in <enum>]
random_member = random.choice(list(<enum>))Cutlery = Enum('Cutlery', ['fork', 'knife', 'spoon'])
Cutlery = Enum('Cutlery', 'fork knife spoon')
Cutlery = Enum('Cutlery', {'fork': 1, 'knife': 2, 'spoon': 3})from functools import partial
LogicOp = Enum('LogicOp', {'AND': partial(lambda l, r: l and r),
'OR' : partial(lambda l, r: l or r)})- Another solution in this particular case, is to use
'and_'and'or_'functions from module Operator.
try:
<code>
except <exception>:
<code>try:
<code_1>
except <exception_a>:
<code_2_a>
except <exception_b>:
<code_2_b>
else:
<code_2_c>
finally:
<code_3>except <exception>:
except <exception> as <name>:
except (<exception_1>, <exception_2>, ...):
except (<exception_1>, <exception_2>, ...) as <name>:- Also catches subclasses of the exception.
raise <exception>
raise <exception>()
raise <exception>(<el>)
raise <exception>(<el_1>, <el_2>, ...)raise ValueError('Argument is of right type but inappropriate value!')
raise TypeError('Argument is of wrong type!')
raise RuntimeError('None of above!')except <exception>:
<code>
raiseBaseException
+-- SystemExit # Raised by the sys.exit() function.
+-- KeyboardInterrupt # Raised when the user hits the interrupt key.
+-- Exception # User-defined exceptions should be derived from this class.
+-- StopIteration # Raised by next() when run on an empty iterator.
+-- ArithmeticError # Base class for arithmetic errors.
| +-- ZeroDivisionError # Raised when dividing by zero.
+-- AttributeError # Raised when an attribute is missing.
+-- EOFError # Raised by input() when it hits end-of-file condition.
+-- LookupError # Raised when a look-up on sequence or dict fails.
| +-- IndexError # Raised when a sequence index is out of range.
| +-- KeyError # Raised when a dictionary key is not found.
+-- NameError # Raised when a variable name is not found.
+-- OSError # Failures such as “file not found” or “disk full”.
| +-- FileNotFoundError # When a file or directory is requested but doesn't exist.
+-- RuntimeError # Raised by errors that don't fall in other categories.
| +-- RecursionError # Raised when the the maximum recursion depth is exceeded.
+-- TypeError # Raised when an argument is of wrong type.
+-- ValueError # When an argument is of right type but inappropriate value.
+-- UnicodeError # Raised when encoding/decoding strings from/to bytes fails.
class MyError(Exception):
pass
class MyInputError(MyError):
passprint(<el_1>, ..., sep=' ', end='\n', file=sys.stdout, flush=False)- Use
'file=sys.stderr'for errors. - Use
'flush=True'to forcibly flush the stream.
>>> from pprint import pprint
>>> pprint(dir())
['__annotations__',
'__builtins__',
'__doc__', ...]- Reads a line from user input or pipe if present.
- Trailing newline gets stripped.
- Prompt string is printed to the standard output before reading input.
<str> = input(prompt=None)while True:
try:
print(input())
except EOFError:
breakimport sys
script_name = sys.argv[0]
arguments = sys.argv[1:]from argparse import ArgumentParser, FileType
p = ArgumentParser(description=<str>)
p.add_argument('-<short_name>', '--<name>', action='store_true') # Flag
p.add_argument('-<short_name>', '--<name>', type=<type>) # Option
p.add_argument('<name>', type=<type>, nargs=1) # Argument
p.add_argument('<name>', type=<type>, nargs='+') # Arguments
args = p.parse_args()
value = args.<name>- Use
'help=<str>'for argument description. - Use
'type=FileType(<mode>)'for files.
Opens a file and returns a corresponding file object.
<file> = open('<path>', mode='r', encoding=None, newline=None)'encoding=None'means default encoding is used, which is platform dependent. Best practice is to use'encoding="utf-8"'whenever possible.'newline=None'means all different end of line combinations are converted to '\n' on read, while on write all '\n' characters are converted to system's default line separator.'newline=""'means no conversions take place, but input is still broken into chunks by readline() and readlines() on either '\n', '\r' or '\r\n'.
'r'- Read (default).'w'- Write (truncate).'x'- Write or fail if the file already exists.'a'- Append.'w+'- Read and write (truncate).'r+'- Read and write from the start.'a+'- Read and write from the end.'t'- Text mode (default).'b'- Binary mode.
'FileNotFoundError'can be risen when reading with'r'or'r+'.'FileExistsError'can be risen when writing with'x'.'IsADirectoryError'and'PermissionError'can be risen by any.'OSError'is the parent class of all listed exceptions.
<file>.seek(0) # Moves to the start of the file.
<file>.seek(offset) # Moves 'offset' chars/bytes from the start.
<file>.seek(0, 2) # Moves to the end of the file.
<bin_file>.seek(±offset, <anchor>) # Anchor: 0 start, 1 current pos., 2 end.<str/bytes> = <file>.read(size=-1) # Reads 'size' chars/bytes or until EOF.
<str/bytes> = <file>.readline() # Returns a line or empty string on EOF.
<list> = <file>.readlines() # Returns a list of remaining lines.
<str/bytes> = next(<file>) # Returns a line using buffer. Do not mix.<file>.write(<str/bytes>) # Writes a string or bytes object.
<file>.writelines(<coll.>) # Writes a coll. of strings or bytes objects.
<file>.flush() # Flushes write buffer.- Methods do not add or strip trailing newlines, even writelines().
def read_file(filename):
with open(filename, encoding='utf-8') as file:
return file.readlines()def write_to_file(filename, text):
with open(filename, 'w', encoding='utf-8') as file:
file.write(text)from os import path, listdir
from glob import glob<bool> = path.exists('<path>')
<bool> = path.isfile('<path>')
<bool> = path.isdir('<path>')<list> = listdir('<path>') # List of filenames located at path.
<list> = glob('<pattern>') # Filenames matching the wildcard pattern.from pathlib import Pathcwd = Path()
<Path> = Path('<path>' [, '<path>', <Path>, ...])
<Path> = <Path> / '<dir>' / '<file>'<bool> = <Path>.exists()
<bool> = <Path>.is_file()
<bool> = <Path>.is_dir()<iter> = <Path>.iterdir() # Returns dir contents as Path objects.
<iter> = <Path>.glob('<pattern>') # Returns Paths matching the wildcard pattern.<str> = str(<Path>) # Path as a string.
<str> = <Path>.name # Final component.
<str> = <Path>.stem # Final component without extension.
<str> = <Path>.suffix # Final component's extension.
<tup.> = <Path>.parts # All components as strings.<Path> = <Path>.resolve() # Returns absolute path without symlinks.
<Path> = <Path>.parent # Returns path without final component.
<file> = open(<Path>) # Opens a file and returns file object.- Paths can be either strings or Path objects.
- All exceptions are either 'OSError' or its subclasses.
import os
<str> = os.getcwd() # Returns the current working directory.
os.chdir(<path>) # Changes current working directory.os.remove(<path>) # Deletes the file.
os.rmdir(<path>) # Deletes empty directory.
shutil.rmtree(<path>) # Deletes the entire directory tree.os.rename(from, to) # Renames the file or directory.
os.replace(from, to) # Same, but overwrites 'to' if it exists.os.mkdir(<path>, mode=0o777) # Creates a directory.
<iter> = os.scandir(path='.') # Returns os.DirEntry objects located at path.<bool> = <DirEntry>.is_file()
<bool> = <DirEntry>.is_dir()<str> = <DirEntry>.path # Path as a string.
<str> = <DirEntry>.name # Final component.<Path> = Path(<DirEntry>) # Path object.
<file> = open(<DirEntry>) # File object.import os
<str> = os.popen('<shell_command>').read()>>> import subprocess, shlex
>>> a = subprocess.run(shlex.split('ls -a'), stdout=subprocess.PIPE)
>>> a.stdout
b'.\n..\nfile1.txt\nfile2.txt\n'
>>> a.returncode
0from csv import reader, writer<reader> = reader(<file>, dialect='excel', delimiter=',')
<list> = next(<reader>) # Returns next row as list of strings.- File must be opened with
'newline=""'argument, or newlines embedded inside quoted fields will not be interpreted correctly!
<writer> = writer(<file>, dialect='excel', delimiter=',')
<writer>.writerow(<collection>) # Encodes objects using `str(<el>)`.
<writer>.writerows(<coll_of_coll>)- File must be opened with
'newline=""'argument, or an extra '\r' will be added on platforms that use '\r\n' linendings!
'dialect'- Master parameter that sets the default values.'delimiter'- A one-character string used to separate fields.'quotechar'- Character for quoting fields that contain special characters.'doublequote'- Whether quotechars inside fields get doubled or escaped.'skipinitialspace'- Whether whitespace after delimiter gets stripped.'lineterminator'- How does writer terminate lines.'quoting'- Controls the amount of quoting: 0 - as necessary, 1 - all.'escapechar'- Character for escaping 'quotechar' if 'doublequote' is false.
+------------------+-----------+-----------+--------------+
| | excel | excel_tab | unix_dialect |
+------------------+-----------+-----------+--------------+
| delimiter | ',' | '\t' | ',' |
| quotechar | '"' | '"' | '"' |
| doublequote | True | True | True |
| skipinitialspace | False | False | False |
| lineterminator | '\r\n' | '\r\n' | '\n' |
| quoting | 0 | 0 | 1 |
| escapechar | None | None | None |
+------------------+-----------+-----------+--------------+
def read_csv_file(filename):
with open(filename, encoding='utf-8', newline='') as file:
return csv.reader(file)def write_to_csv_file(filename, rows):
with open(filename, 'w', encoding='utf-8', newline='') as file:
writer = csv.writer(file)
writer.writerows(rows)import json
<str> = json.dumps(<object>, ensure_ascii=True, indent=None)
<object> = json.loads(<str>)def read_json_file(filename):
with open(filename, encoding='utf-8') as file:
return json.load(file)def write_to_json_file(filename, an_object):
with open(filename, 'w', encoding='utf-8') as file:
json.dump(an_object, file, ensure_ascii=False, indent=2)import pickle
<bytes> = pickle.dumps(<object>)
<object> = pickle.loads(<bytes>)def read_pickle_file(filename):
with open(filename, 'rb') as file:
return pickle.load(file)def write_to_pickle_file(filename, an_object):
with open(filename, 'wb') as file:
pickle.dump(an_object, file)Server-less database engine that stores each database into separate file.
import sqlite3
db = sqlite3.connect('<path>') # Also ':memory:'.
...
db.close()- New database will be created if path doesn't exist.
cursor = db.execute('<query>')
if cursor:
<tuple> = cursor.fetchone() # First row. Also next(cursor).
<list> = cursor.fetchall() # Remaining rows.- Returned values can be of type str, int, float, bytes or None.
db.execute('<query>')
db.commit()with db:
db.execute('<query>')db.execute('<query>', <list/tuple>) # Replaces '?'s in query with values.
db.execute('<query>', <dict/namedtuple>) # Replaces ':<key>'s with values.
db.executemany('<query>', <coll_of_above>) # Runs execute() many times.- Passed values can be of type str, int, float, bytes, None, bool, datetime.date or datetime.datetme.
- Bools will be stored and returned as ints and dates as ISO formatted strings.
>>> db = sqlite3.connect('test.db')
>>> db.execute('create table t (a, b, c)')
>>> db.execute('insert into t values (1, 2, 3)')
>>> db.execute('select * from t').fetchall()
[(1, 2, 3)]- In this example values are not actually saved because
'db.commit()'was omitted.
Has a very similar interface, with differences listed below.
# $ pip3 install mysql-connector
from mysql import connector
db = connector.connect(host=<str>, user=<str>, password=<str>, database=<str>)
cursor = db.cursor()
cursor.execute('<query>') # Only cursor has execute method.
cursor.execute('<query>', <list/tuple>) # Replaces '%s's in query with values.
cursor.execute('<query>', <dict/namedtuple>) # Replaces '%(<key>)s's with values.Bytes object is an immutable sequence of single bytes. Mutable version is called 'bytearray'.
<bytes> = b'<str>' # Only accepts ASCII characters and \x00 - \xff.
<int> = <bytes>[<index>] # Returns int in range from 0 to 255.
<bytes> = <bytes>[<slice>] # Returns bytes even if it has only one element.
<bytes> = <bytes>.join(<coll_of_bytes>) # Joins elements using bytes object as separator.<bytes> = <str>.encode('utf-8') # Or: bytes(<str>, 'utf-8')
<bytes> = bytes(<coll_of_ints>) # Ints must be in range from 0 to 255.
<bytes> = <int>.to_bytes(<length>, byteorder='big|little', signed=False)
<bytes> = bytes.fromhex('<hex>')<str> = <bytes>.decode('utf-8') # Or: str(<bytes>, 'utf-8')
<list> = list(<bytes>) # Returns ints in range from 0 to 255.
<int> = int.from_bytes(<bytes>, byteorder='big|little', signed=False)
'<hex>' = <bytes>.hex()def read_bytes(filename):
with open(filename, 'rb') as file:
return file.read()def write_bytes(filename, bytes_obj):
with open(filename, 'wb') as file:
file.write(bytes_obj)- Module that performs conversions between a sequence of numbers and a C struct, represented as a Python bytes object.
- Machine’s native type sizes and byte order are used by default.
from struct import pack, unpack, iter_unpack, calcsize
<bytes> = pack('<format>', <num_1> [, <num_2>, ...])
<tuple> = unpack('<format>', <bytes>)
<tuples> = iter_unpack('<format>', <bytes>)>>> pack('>hhl', 1, 2, 3)
b'\x00\x01\x00\x02\x00\x00\x00\x03'
>>> unpack('>hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03')
(1, 2, 3)'='- native byte order'<'- little-endian'>'- big-endian
'x'- pad byte'b'- char (1)'h'- short (2)'i'- int (4)'l'- long (4)'q'- long long (8)
'f'- float (4)'d'- double (8)
List that can only hold numbers of predefined type. Available types and their sizes in bytes are listed above.
from array import array
<array> = array('<typecode>' [, <collection>])Used for accessing the internal data of an object that supports the buffer protocol.
<memoryview> = memoryview(<bytes> / <bytearray> / <array>)
<memoryview>.release()A thread-safe list with efficient appends and pops from either side. Pronounced "deck".
from collections import deque
<deque> = deque(<collection>, maxlen=None)<deque>.appendleft(<el>)
<el> = <deque>.popleft()
<deque>.extendleft(<collection>) # Collection gets reversed.
<deque>.rotate(n=1) # Rotates elements to the right.>>> a = deque([1, 2, 3], maxlen=3)
>>> a.append(4)
[2, 3, 4]
>>> a.appendleft(5)
[5, 2, 3]
>>> a.insert(1, 6)
IndexError: deque already at its maximum sizefrom threading import Thread, RLockthread = Thread(target=<function>, args=(<first_arg>, ))
thread.start()
...
thread.join()lock = RLock()
lock.acquire()
...
lock.release()lock = RLock()
with lock:
...Inspecting code at runtime.
<list> = dir() # Names of variables in current scope.
<dict> = locals() # Dict of local variables. Also vars().
<dict> = globals() # Dict of global variables.<dict> = vars(<object>)
<bool> = hasattr(<object>, '<attr_name>')
value = getattr(<object>, '<attr_name>')
setattr(<object>, '<attr_name>', value)from inspect import signature
<sig> = signature(<function>)
no_of_params = len(<sig>.parameters)
param_names = list(<sig>.parameters.keys())Code that generates code.
Type is the root class. If only passed an object it returns its type (class). Otherwise it creates a new class.
<class> = type(<class_name>, <parents_tuple>, <attributes_dict>)>>> Z = type('Z', (), {'a': 'abcde', 'b': 12345})
>>> z = Z()Class that creates class.
def my_meta_class(name, parents, attrs):
attrs['a'] = 'abcde'
return type(name, parents, attrs)class MyMetaClass(type):
def __new__(cls, name, parents, attrs):
attrs['a'] = 'abcde'
return type.__new__(cls, name, parents, attrs)- New() is a class method that gets called before init(). If it returns an instance of its class, then that instance gets passed to init() as a 'self' argument.
- It receives the same arguments as init(), except for the first one that specifies the desired class of returned instance (
'MyMetaClass'in our case). - New() can also be called directly, usually from a new() method of a child class (
def __new__(cls): return super().__new__(cls)), in which case init() is not called.
Right before a class is created it checks if it has metaclass defined. If not, it recursively checks if any of his parents has it defined and eventually comes to type().
class MyClass(metaclass=MyMetaClass):
b = 12345>>> MyClass.a, MyClass.b
('abcde', 12345)type(MyClass) == MyMetaClass # MyClass is an instance of MyMetaClass.
type(MyMetaClass) == type # MyMetaClass is an instance of type.+---------+-------------+
| Classes | Metaclasses |
+---------+-------------|
| MyClass > MyMetaClass |
| | v |
| object ---> type <+ |
| | ^ +---+ |
| str -------+ |
+---------+-------------+
MyClass.__base__ == object # MyClass is a subclass of object.
MyMetaClass.__base__ == type # MyMetaClass is a subclass of type.+---------+-------------+
| Classes | Metaclasses |
+---------+-------------|
| MyClass | MyMetaClass |
| v | v |
| object <--- type |
| ^ | |
| str | |
+---------+-------------+
from operator import add, sub, mul, truediv, floordiv, mod, pow, neg, abs
from operator import eq, ne, lt, le, gt, ge
from operator import and_, or_, not_
from operator import itemgetter, attrgetter, methodcallerimport operator as op
sorted_by_second = sorted(<collection>, key=op.itemgetter(1))
sorted_by_both = sorted(<collection>, key=op.itemgetter(1, 0))
product_of_elems = functools.reduce(op.mul, <collection>)
LogicOp = enum.Enum('LogicOp', {'AND': op.and_, 'OR' : op.or_})
last_el = op.methodcaller('pop')(<list>)>>> from ast import literal_eval
>>> literal_eval('1 + 2')
3
>>> literal_eval('[1, 2, 3]')
[1, 2, 3]
>>> literal_eval('abs(1)')
ValueError: malformed node or string- Similar to generator, but generator pulls data through the pipe with iteration, while coroutine pushes data into the pipeline with send().
- Coroutines provide more powerful data routing possibilities than iterators.
- If you build a collection of simple data processing components, you can glue them together into complex arrangements of pipes, branches, merging, etc.
- All coroutines must be "primed" by first calling next().
- Remembering to call next() is easy to forget.
- Solved by wrapping coroutines with a decorator:
def coroutine(func):
def out(*args, **kwargs):
cr = func(*args, **kwargs)
next(cr)
return cr
return outdef reader(target):
for i in range(10):
target.send(i)
target.close()
@coroutine
def adder(target):
while True:
value = (yield)
target.send(value + 100)
@coroutine
def printer():
while True:
value = (yield)
print(value)
reader(adder(printer())) # 100, 101, ..., 109# $ pip3 install tqdm
from tqdm import tqdm
from time import sleep
for i in tqdm([1, 2, 3]):
sleep(0.2)
for i in tqdm(range(100)):
sleep(0.02)# $ pip3 install matplotlib
from matplotlib import pyplot
pyplot.plot(<data_1> [, <data_2>, ...]) # Or: hist(<data>).
pyplot.savefig(<filename>)
pyplot.show()
pyplot.clf() # Clears figure.# $ pip3 install tabulate
from tabulate import tabulate
import csv
with open(<filename>, encoding='utf-8', newline='') as file:
lines = csv.reader(file)
headers = [header.title() for header in next(lines)]
table = tabulate(lines, headers)
print(table)from curses import wrapper, ascii
def main():
wrapper(draw)
def draw(screen):
screen.clear()
screen.addstr(0, 0, 'Press ESC to quit.')
while screen.getch() != ascii.ESC:
pass
def get_border(screen):
from collections import namedtuple
P = namedtuple('P', 'y x')
height, width = screen.getmaxyx()
return P(height-1, width-1)
if __name__ == '__main__':
main()# $ pip3 install loguru
from loguru import loggerlogger.add('debug_{time}.log', colorize=True) # Connects a log file.
logger.add('error_{time}.log', level='ERROR') # Another file for errors or higher.
logger.<level>('A logging message.')- Levels:
'debug','info','success','warning','error','critical'.
Error description, stack trace and values of variables are appended automatically.
try:
...
except <exception>:
logger.exception('An error happened.')Argument that sets a condition when a new log file is created.
rotation=<int>|<datetime.timedelta>|<datetime.time>|<str>'<int>'- Max file size in bytes.'<timedelta>'- Max age of a file.'<time>'- Time of day.'<str>'- Any of above as a string:'100 MB','1 month','monday at 12:00', ...
Sets a condition which old log files are deleted.
retention=<int>|<datetime.timedelta>|<str>'<int>'- Max number of files.'<timedelta>'- Max age of a file.'<str>'- Max age as a string:'1 week, 3 days','2 months', ...
# $ pip3 install requests beautifulsoup4
import requests
from bs4 import BeautifulSoup
url = 'https://en.wikipedia.org/wiki/Python_(programming_language)'
html = requests.get(url).text
doc = BeautifulSoup(html, 'html.parser')
table = doc.find('table', class_='infobox vevent')
rows = table.find_all('tr')
link = rows[11].find('a')['href']
ver = rows[6].find('div').text.split()[0]
print(link, ver)url_img = rows[0].find('img')['src']
image = requests.get(f'https:{url_img}').content
with open('test.png', 'wb') as file:
file.write(image)# $ pip3 install bottle
from bottle import run, route, post, template, request, response
import jsonrun(host='localhost', port=8080)
run(host='0.0.0.0', port=80, server='cherrypy')@route('/img/<image>')
def send_image(image):
return static_file(image, 'images/', mimetype='image/png')@route('/<sport>')
def send_page(sport):
return template('<h1>{{title}}</h1>', title=sport)@post('/odds/<sport>')
def odds_handler(sport):
team = request.forms.get('team')
home_odds, away_odds = 2.44, 3.29
response.headers['Content-Type'] = 'application/json'
response.headers['Cache-Control'] = 'no-cache'
return json.dumps([team, home_odds, away_odds])# $ pip3 install requests
>>> import requests
>>> url = 'http://localhost:8080/odds/football'
>>> data = {'team': 'arsenal f.c.'}
>>> response = requests.post(url, data=data)
>>> response.json()
['arsenal f.c.', 2.44, 3.29]from time import time
start_time = time() # Seconds since Epoch.
...
duration = time() - start_timefrom time import perf_counter as pc
start_time = pc() # Seconds since restart.
...
duration = pc() - start_time>>> from timeit import timeit
>>> timeit('"-".join(str(a) for a in range(100))',
... number=10000, globals=globals(), setup='pass')
0.34986# $ pip3 install line_profiler
@profile
def main():
a = [*range(10000)]
b = {*range(10000)}
main()$ kernprof -lv test.py
Line # Hits Time Per Hit % Time Line Contents
==============================================================
1 @profile
2 def main():
3 1 1128.0 1128.0 27.4 a = [*range(10000)]
4 1 2994.0 2994.0 72.6 b = {*range(10000)}
# $ pip3 install pycallgraph
from pycallgraph import output, PyCallGraph
from datetime import datetime
time_str = datetime.now().strftime('%Y%m%d%H%M%S')
filename = f'profile-{time_str}.png'
drawer = output.GraphvizOutput(output_file=filename)
with PyCallGraph(drawer):
<code_to_be_profiled>Array manipulation mini language. Can run up to one hundred times faster than equivalent Python code.
# $ pip3 install numpy
import numpy as np<array> = np.array(<list>)
<array> = np.arange(from_inclusive, to_exclusive, ±step_size)
<array> = np.ones(<shape>)
<array> = np.random.randint(from_inclusive, to_exclusive, <shape>)<array>.shape = <shape>
<view> = <array>.reshape(<shape>)
<view> = np.broadcast_to(<array>, <shape>)<array> = <array>.sum(axis)
indexes = <array>.argmin(axis)- Shape is a tuple of dimension sizes.
- Axis is an index of dimension that gets collapsed. Leftmost dimension has index 0.
<el> = <2d_array>[0, 0] # First element.
<1d_view> = <2d_array>[0] # First row.
<1d_view> = <2d_array>[:, 0] # First column. Also [..., 0].
<3d_view> = <2d_array>[None, :, :] # Expanded by dimension of size 1.<1d_array> = <2d_array>[<1d_row_indexes>, <1d_column_indexes>]
<2d_array> = <2d_array>[<2d_row_indexes>, <2d_column_indexes>]<2d_bools> = <2d_array> > 0
<1d_array> = <2d_array>[<2d_bools>]- If row and column indexes differ in shape, they are combined with broadcasting.
Broadcasting is a set of rules by which NumPy functions operate on arrays of different sizes and/or dimensions.
left = [[0.1], [0.6], [0.8]] # Shape: (3, 1)
right = [ 0.1 , 0.6 , 0.8 ] # Shape: (3)left = [[0.1], [0.6], [0.8]] # Shape: (3, 1)
right = [[0.1 , 0.6 , 0.8]] # Shape: (1, 3) <- !2. If any dimensions differ in size, expand the ones that have size 1 by duplicating their elements:
left = [[0.1, 0.1, 0.1], [0.6, 0.6, 0.6], [0.8, 0.8, 0.8]] # Shape: (3, 3) <- !
right = [[0.1, 0.6, 0.8], [0.1, 0.6, 0.8], [0.1, 0.6, 0.8]] # Shape: (3, 3) <- !>>> points = np.array([0.1, 0.6, 0.8])
[ 0.1, 0.6, 0.8]
>>> wrapped_points = points.reshape(3, 1)
[[ 0.1],
[ 0.6],
[ 0.8]]
>>> distances = wrapped_points - points
[[ 0. , -0.5, -0.7],
[ 0.5, 0. , -0.2],
[ 0.7, 0.2, 0. ]]
>>> distances = np.abs(distances)
[[ 0. , 0.5, 0.7],
[ 0.5, 0. , 0.2],
[ 0.7, 0.2, 0. ]]
>>> i = np.arange(3)
[0, 1, 2]
>>> distances[i, i] = np.inf
[[ inf, 0.5, 0.7],
[ 0.5, inf, 0.2],
[ 0.7, 0.2, inf]]
>>> distances.argmin(1)
[1, 2, 1]# $ pip3 install pillow
from PIL import Imagewidth = 100
height = 100
size = width * height
pixels = [255 * i/size for i in range(size)]
img = Image.new('HSV', (width, height))
img.putdata([(int(a), 255, 255) for a in pixels])
img.convert(mode='RGB').save('test.png')from random import randint
add_noise = lambda value: max(0, min(255, value + randint(-20, 20)))
img = Image.open('test.png').convert(mode='HSV')
img.putdata([(add_noise(h), s, v) for h, s, v in img.getdata()])
img.convert(mode='RGB').save('test.png')'1'- 1-bit pixels, black and white, stored with one pixel per byte.'L'- 8-bit pixels, greyscale.'RGB'- 3x8-bit pixels, true color.'RGBA'- 4x8-bit pixels, true color with transparency mask.'HSV'- 3x8-bit pixels, Hue, Saturation, Value color space.
import wave
from struct import pack, iter_unpackdef read_wav_file(filename):
with wave.open(filename, 'rb') as wf:
frames = wf.readframes(wf.getnframes())
return [a[0] for a in iter_unpack('<h', frames)]def write_to_wav_file(filename, frames_int, mono=True):
frames_short = (pack('<h', a) for a in frames_int)
with wave.open(filename, 'wb') as wf:
wf.setnchannels(1 if mono else 2)
wf.setsampwidth(2)
wf.setframerate(44100)
wf.writeframes(b''.join(frames_short))from math import pi, sin
frames_f = (sin(i * 2 * pi * 440 / 44100) for i in range(100000))
frames_i = (int(a * 30000) for a in frames_f)
write_to_wav_file('test.wav', frames_i)from random import randint
add_noise = lambda value: max(-32768, min(32767, value + randint(-500, 500)))
frames_i = (add_noise(a) for a in read_wav_file('test.wav'))
write_to_wav_file('test.wav', frames_i)# $ pip3 install simpleaudio
import simpleaudio, math, struct
from itertools import chain, repeat
F = 44100
P1 = '71♪,69,,71♪,66,,62♪,66,,59♪,,,'
P2 = '71♪,73,,74♪,73,,74,,71,,73♪,71,,73,,69,,71♪,69,,71,,67,,71♪,,,'
get_pause = lambda seconds: repeat(0, int(seconds * F))
sin_f = lambda i, hz: math.sin(i * 2 * math.pi * hz / F)
get_wave = lambda hz, seconds: (sin_f(i, hz) for i in range(int(seconds * F)))
get_hz = lambda key: 8.176 * 2 ** (int(key) / 12)
parse_note = lambda note: (get_hz(note[:2]), 0.25 if '♪' in note else 0.125)
get_frames = lambda note: get_wave(*parse_note(note)) if note else get_pause(0.125)
frames_f = chain.from_iterable(get_frames(n) for n in f'{P1}{P1}{P2}'.split(','))
frames_b = b''.join(struct.pack('<h', int(f * 30000)) for f in frames_f)
simpleaudio.play_buffer(frames_b, 1, 2, F)#!/usr/bin/env python3
#
# Usage: .py
#
from collections import namedtuple
from dataclasses import make_dataclass
from enum import Enum
import re
import sys
def main():
pass
###
## UTIL
#
def read_file(filename):
with open(filename, encoding='utf-8') as file:
return file.readlines()
if __name__ == '__main__':
main()