8000 [Feature] Integrate quick allreduce and select the best allreduce implementation by lihaoyang-amd · Pull Request #6619 · sgl-project/sglang · GitHub
[go: up one dir, main page]

Skip to content

Conversation

lihaoyang-amd
Copy link
Contributor
@lihaoyang-amd lihaoyang-amd commented May 26, 2025

Just For ROCM
1.Add quickreduce alternative to custom allreduce and rccl. (In case of large amount of data, custom quick reduce is used instead of custom allreduce and rccl, you can refer to the results of kernel tests.)

2.The collective is only enabled on AMD, MI300, for fp16/bf16 inputs and when custom allreduce is enabled. The kernels support full precision and quantized int8, int6, int4 (symmetric quantization with group size 32) all reduce collective quantization algorithm.

3.The quickreduce can be enabled by setting ROCM_QUICK_REDUCE_QUANTIZATION=[NONE|FP|INT8|INT6|INT4] env variable. quickreduce supports int8, int6, int4 quantization. NONE means turn off quick allreduce. FP means keep fp16 or bf16 without quantization.

4.PR supports fp16 and bf16 kernels but given the lack of intrinsics of bf16 math operations, bf16 kernels performance is worse (see kernel benchmark results below), so by default we convert bf16 all reduce input to fp16. To disable this behavior, set the environment variable ROCM_QR_CAST_BF16_TO_FP16=0.

5.As long as quickreduce only get the performance benefits at middle/higher input sizes (see kernel benchmarks), vllm keeps using custom allreduce for small inputs. The lower limit for enabling quickreduce is chosen based on experimental results.

6.Quick allreduce doesn't require a separate graph mode, as QR uses static IPC buffer. The default maximum input size of quickreduce is 2GB, for users with limited video memory, the preset buffer may be a bit too large, you can adjust the value in MB by ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB.

Kernels benchmark

Baseline is custom allreduce when the data size is less than 16MB and rccl when the data size is greater than 16MB

TP=2 (latency us)

msg size baseline fp16 fp16 to int8 fp16 to int6 fp16 to int4 bf16 bf16 to int8 bf16 to int6 bf16 to int4
2.0KB 7.26 10.75 22.05 23.79 19.04 13.11 92.69 94.29 92.05
32.0KB 7.40 10.88 22.09 24.18 19.16 13.23 93.39 95.16 92.63
256.0KB 11.87 14.91 23.89 25.54 20.35 17.56 95.58 96.54 94.54
512.0KB 18.08 19.93 25.62 25.88 21.17 22.09 95.30 96.18 94.66
1.0MB 30.07 30.57 31.19 29.81 23.57 32.55 96.10 97.14 95.30
2.0MB 53.76 51.96 43.50 39.25 30.03 54.08 99.33 99.15 96.80
4.0MB 102.19 97.90 66.63 57.63 42.74 98.62 125.23 116.04 105.32
8.0MB 199.01 190.19 115.36 95.66 68.28 191.92 178.99 158.96 138.31
16.0MB 391.43 378.94 219.60 174.70 125.08 378.34 287.39 244.03 201.06
32.0MB 892.99 739.28 425.61 339.69 243.53 741.36 517.28 437.13 351.26
64.0MB 1465.11 1466.43 828.58 650.82 464.56 1470.50 953.49 801.14 635.16
128.0MB 2912.45 2917.14 1634.59 1277.78 898.42 2935.37 1777.66 1450.88 1153.58
256.0MB 5927.01 5822.34 3252.23 2534.88 1772.40 5866.49 3433.40 2804.97 2192.04
512.0MB 11575.91 11639.26 6491.12 5058.28 3522.78 11727.95 6809.77 5505.87 4262.04
1GB 23223.61 23255.00 12971.35 10106.85 7023.81 23435.05 13586.55 10945.95 8392.96
2GB 45968.99 46101.59 26021.00 20228.00 14164.00 47084.30 27227.85 21836.00 16624.25

TP=4 (latency us)

msg size baseline fp16 fp16 to int8 fp16 to int6 fp16 to int4 bf16 bf16 to int8 bf16 to int6 bf16 to int4
2.0KB 7.18 12.67 23.89 25.62 21.33 16.14 79.68 93.95 84.15
16.0KB 7.26 12.79 23.69 25.84 21.29 16.12 80.08 93.89 84.31
32.0KB 7.58 12.87 23.81 25.94 21.27 16.20 80.72 94.33 84.87
256.0KB 14.39 15.88 26.78 27.48 22.85 19.18 82.15 94.74 86.22
512.0KB 14.65 17.76 27.12 27.98 23.65 21.01 81.73 94.75 86.30
1.0MB 22.91 22.49 29.43 29.85 24.72 26.34 82.55 95.92 81.59
2.0MB 36.64 36.08 40.97 39.27 28.49 38.45 86.48 97.98 82.35
4.0MB 63.86 63.28 66.95 54.81 37.49 72.12 109.41 114.94 90.81
8.0MB 118.31 126.69 126.43 99.41 64.23 137.45 168.64 157.50 116.16
16.0MB 230.48 237.08 204.46 167.08 109.77 237.42 290.08 256.74 183.08
32.0MB 389.03 439.12 390.55 307.40 217.65 441.30 470.49 440.30 304.83
64.0MB 1017.56 825.53 654.79 509.82 364.77 837.36 803.16 731.90 522.51
128.0MB 1910.37 1587.00 1090.06 848.89 596.27 1606.67 1307.73 1220.87 886.31
256.0MB 3542.03 3082.80 1970.84 1535.23 1078.49 3135.44 2281.91 2180.19 1613.20
512.0MB 6560.81 6098.23 3735.02 2892.65 2015.72 6185.95 4282.83 4096.10 3154.83
1GB 12582.56 12105.15 7275.68 5618.14 3895.45 12288.60 8317.19 7991.48 6231.14
2GB 24453.95 24570.59 14636.20 11087.40 7685.00 24529.95 16488.65 15956.70 12265.90

TP 8 (latency us)

msg size baseline fp16 fp16 to int8 fp16 to int6 fp16 to int4 bf16 bf16 to int8 bf16 to int6 bf16 to int4
4k 14.07 14.47 28.42 30.65 28.31 19.44 79.46 86.40 78.88
8k 12.99 15.52 30.99 31.88 27.69 19.18 80.49 87.08 79.59
16k 12.38 15.13 29.89 31.78 27.46 18.99 81.10 87.71 80.10
32k 12.29 15.38 29.79 31.79 28.73 19.21 81.89 83.33 81.52
64k 12.39 22.50 31.53 31.81 28.92 19.87 82.59 84.53 81.33
128k 13.75 20.61 31.21 33.35 40.00 22.22 83.23 87.84 82.24
256k 17.13 21.05 37.70 47.96 45.16 25.07 82.45 87.31 84.08
512k 17.51 22.04 32.41 34.73 37.60 25.06 83.44 86.34 85.00
1M 24.92 23.44 32.76 34.57 31.06 27.88 85.35 87.96 83.70
2M 36.06 30.27 42.37 41.19 30.98 34.09 90.69 90.69 88.53
4M 50.92 46.09 47.26 43.68 34.15 49.57 113.57 93.56 92.43
8M 83.69 84.15 81.73 66.15 47.80 85.35 125.36 122.75 115.00
16M 149.02 148.81 188.60 137.84 83.37 144.57 246.64 180.91 152.14
32M 239.78 259.39 345.67 255.08 178.61 253.05 402.91 336.31 265.64
64M 425.57 463.76 520.00 399.89 281.86 466.72 690.57 569.52 463.40
128M 793.60 861.38 787.08 618.50 444.63 863.46 1050.74 899.01 770.36
256M 1537.40 1652.66 1307.59 1101.47 862.49 1652.09 1788.94 1661.50 1516.37
512M 3028.06 3230.72 2333.97 2036.01 1678.64 3215.32 3480.68 3286.91 3064.64
1GB 5993.59 6392.41 4396.49 3932.57 3325.08 6366.13 6726.18 6470.78 6167.29
2GB 11944.33 12770.91 8645.80 7864.18 6786.01 12793.68 13185.73 12846.10 12244.02

E2E server benchmark
Environment:
torch 2.6.0a0+git8d4926e; aiter 0.1.2; transformers 4.53.2; triton 3.2.0+gitcddf0fc3; sglang main+429bb0ef
E2E test command:
Server: ROCM_QUICK_REDUCE_QUANTIZATION=[NONE|FP|INT8|INT6|INT4] python -m sglang.launch_server --model-path $model_path --tp-size $tp --port $port --disable-radix-cache
Client: python3 -m sglang.bench_serving --backend sglang --num-prompt 200 --port $port
ACC test command:
Server: ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16=1 ROCM_QUICK_REDUCE_QUANTIZATION=[NONE|FP|INT8|INT6|INT4] python -m sglang.launch_server --model-path $model_path --tp-size $tp --port $port --disable-radix-cache
Client: python3 sglang/benchmark/gsm8k/bench_sglang.py --port $port --num-questions 400
(The following test data enables bf16 to fp16 conversion by ROCM_QR_CAST_BF16_TO_FP16=1)

Qwen2.5-72B-instruct (BF16) Q_lelvel TTFT/ms Speedup ITL/ms Speedup GSM8K
tp8 baseline 2597.13 1 25.49 1 0.965
  Q8 2451.47 1.06 25.51 1 0.953
  Q6 2403.44 1.08 25.12 1.01 0.955
  Q4 2310.53 1.12 25.1 1.02 0.95
tp4 baseline 4601.66 1 40.3 1 0.943
  Q8 4041.28 1.14 38.62 1.04 0.94
  Q6 3906.27 1.18 38.23 1.05 0.955
  Q4 3629.15 1.27 37.84 1.07 0.948
tp2 baseline 8309.98 1 65.39 1 0.945
  Q8 7350.02 1.13 62.55 1.05 0.943
  Q6 7073.07 1.17 62.07 1.05 0.943
  Q4 6647.16 1.25 59.6 1.1 0.932
Llama-2-70b-hf (FP16) Q_lelvel TTFT Speedup ITL Speedup GSM8K
tp8 baseline 2680.25 1 23.53 1 0.557
  Q8 2564.34 1.05 23.36 1.01 0.555
  Q6 2460.63 1.09 23.12 1.02 0.55
  Q4 2375.65 1.13 22.65 1.04 0.54
tp4 baseline 4746.47 1 35.98 1 0.56
  Q8 4262.99 1.11 35.09 1.03 0.555
  Q6 4099.4 1.16 35.01 1.03 0.545
  Q4 3874.6 1.23 34.24 1.05 0.54
tp2 baseline 9127.67 1 60.31 1 0.56
  Q8 8023.41 1.14 58.09 1.04 0.56
  Q6 7740.93 1.18 57.48 1.05 0.54
  Q4 7218.37 1.26 55.03 1.1 0.53
Llama-3.1-8B-instruct (BF16) Q_lelvel TTFT Speedup ITL Speedup GSM8K
tp8 baseline 545.49 1 6.42 1 0.782
  Q8 528.14 1.03 6.52 0.98 0.78
  Q6 501.31 1.09 6.41 1 0.777
  Q4 484.49 1.13 6.39 1 0.785
tp4 baseline 803.76 1 8.87 1 0.782
  Q8 710.7 1.13 8.62 1.03 0.787
  Q6 665.29 1.21 8.58 1.03 0.785
  Q4 634.82 1.27 8.51 1.04 0.765
tp2 baseline 1284.92 1 13.76 1 0.79
  Q8 1052.81 1.22 13.2 1.04 0.775
  Q6 1008.41 1.27 13.15 1.05 0.785
  Q4 924.89 1.39 12.71 1.08 0.79

@lihaoyang-amd lihaoyang-amd force-pushed the amd_add_quickreduce branch 5 times, most recently from 05c5e56 to e56406f Compare May 28, 2025 16:30
@lihaoyang-amd lihaoyang-amd marked this pull request as ready for review May 28, 2025 16:35
@lihaoyang-amd lihaoyang-amd force-pushed the amd_add_quickreduce branch from e56406f to 2b9f908 Compare May 29, 2025 16:41
@zyksir
Copy link
Collaborator
zyksir commented May 29, 2025

Based on the result, can we say that either custom allreduce or 2stage Q4 should be used?

@lihaoyang-amd
Copy link
Contributor Author
lihaoyang-amd commented May 30, 2025

Based on the result, can we say that either custom allreduce or 2stage Q4 should be used?

To maintain precision, it might make more sense to use fp8 by default.
Currently qr has a maximum buffer limit of 512MB (can turn it up.), beyond which it will degrade to nccl or torch.distributed. However, for general modeling reasoning, allreduce should not touch this upper limit.
(out of date)

@lihaoyang-amd lihaoyang-amd force-pushed the amd_add_quickreduce branch 3 times, most recently from e3b3978 to d255d3d Compare July 23, 2025 11:00
@HaiShaw HaiShaw added the good first issue Good for newcomers label Jul 24, 2025
@HaiShaw
Copy link
Collaborator
HaiShaw commented Jul 24, 2025

@lihaoyang-amd Let's triage to add quantized FP8 for collective.

Copy link
Collaborator
@HaiShaw HaiShaw left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

@HaiShaw HaiShaw enabled auto-merge (squash) July 24, 2025 09:03
@lihaoyang-amd lihaoyang-amd changed the title Integrate quick allreduce and select the best allreduce implementation [Feature] Integrate quick allreduce and select the best allreduce implementation Jul 24, 2025
auto-merge was automatically disabled July 24, 2025 11:29

Head branch was pushed to by a user without write access

lihaoyang-amd and others added 5 commits July 24, 2025 11:31
Signed-off-by: Haoyang Li <Haoyang.Li@amd.com>
Co-authored-by: Haoyang Li <307790822@qq.com>
Signed-off-by: Haoyang Li <Haoyang.Li@amd.com>
Co-authored-by: Haoyang Li <307790822@qq.com>
Signed-off-by: Haoyang Li <Haoyang.Li@amd.com>
Co-authored-by: Haoyang Li <307790822@qq.com>
Signed-off-by: Haoyang Li <Haoyang.Li@amd.com>
Co-authored-by: ilmarkov <imarkov@redhat.com>
Co-authored-by: Haoyang Li <haoyang.li@amd.com>
Signed-off-by: Haoyang Li <Haoyang.Li@amd.com>
@HaiShaw HaiShaw enabled auto-merge (squash) July 24, 2025 17:25
@zhyncs zhyncs disabled auto-merge July 25, 2025 03:48
@zhyncs zhyncs merged commit 28d4d47 into sgl-project:main Jul 25, 2025
174 of 190 checks passed
ShangmingCai pushed a commit that referenced this pull request Aug 5, 2025
…lementation (#6619)

Signed-off-by: Haoyang Li <Haoyang.Li@amd.com>
Co-authored-by: ilmarkov <imarkov@redhat.com>
ShangmingCai pushed a commit that referenced this pull request Aug 5, 2025
…lementation (#6619)

Signed-off-by: Haoyang Li <Haoyang.Li@amd.com>
Co-authored-by: ilmarkov <imarkov@redhat.com>
yuan-luo pushed a commit to antgroup/sglang that referenced this pull request Sep 18, 2025
Merge branch 'sglang_public_tracker of git@code.alipay.com:Theta/SGLang.git into main

https://code.alipay.com/Theta/SGLang/pull_requests/192


Reviewed-by: 得泽 <zhangkaihong.zkh@antgroup.com>


* fix duplicate args in schedule_batch (sgl-project#7816)
* [AMD] Fail gracefully when AITER is unavailable gfx90a GPUs (sgl-project#7187)
* docs: update README (sgl-project#7821)
* [theta] add py-spy deps
* feat: support DeepSeek-R1-W4AFP8 model with ep-moe mode (sgl-project#7762)
* Enable ModelOpt Llama4 fp8 checkpoint deployment in SGLang (sgl-project#7129)
* [Minor] Fix sporadic CI timeout caused by underestimated tests. (sgl-project#7850)
* [Bugfix] Fix two batch overlap with auto DeepEP Dispatch (sgl-project#7853)
* Fix cache modules of triton import error (sgl-project#7832)
* [router] forward stream_options in request (sgl-project#7860)
* Fix illegal memory in trtllm allreduce fusion (sgl-project#7864)
* Fix llama4 vision (sgl-project#7840)
* Support Mimo-VL (sgl-project#7579)
* fix: Handles input_embeds in GenerateReqInput when n>1 (sgl-project#7830)
* [Multimodal][Perf] Use `pybase64` instead of `base64` (sgl-project#7724)
* Bump xgrammar's version to 0.1.20 (sgl-project#7866)
* [CPU]convert topk_weights to fp32 for INT8 and FP8 paths (for llama4) and fix LmHead weight pack (sgl-project#7818)
* [PD] Add guidance for prefill bootstrap timeout (sgl-project#7846)
* Update native_api doc to match the change in the `get_model_info` endpoint (sgl-project#7660)
* Revert "Embedding parallel by attn_tp (sgl-project#7623)" (sgl-project#7880)
* chore: bump v0.4.9.post1 (sgl-project#7882)
* Fixes typo in assertion message (sgl-project#7895)
* [CI] Add deepep tests to CI (sgl-project#7872)
* [CPU] [FP8] set SGLANG_CPU_FP8_CVT_FTZ in CMakeLists.txt (sgl-project#7885)
* [CPU][Qwen3 MoE] Enable fused_topk CPU fusion and enhance FP8 TP padding (sgl-project#7838)
* Remove unused imports (sgl-project#7898)
* [router] Update metrics when request completes (sgl-project#7899)
* [feature] Add start step profile argument in /start_profile (sgl-project#7608)
* [bugfix] add pd router policy validation (sgl-project#7904)
* vlm: support video as an input modality (sgl-project#5888)
* Feat: Support Phi-3.5-MoE in SGLang (sgl-project#7907)
* add sentencepiece as dependency explicitly (sgl-project#7922)
* Fix bug of deepseek-v3 under DP+EP mode with large batchsize/seqlen (sgl-project#6449)
* [feature]Ascend quantization support (sgl-project#7791)
* [ready b200] fuse allreduce+add_rmsnorm in prepare_attention + mlp module (sgl-project#7775)
* Support Kimi K2 (sgl-project#7940)
* [feature] kv transfer support of ascend npu (sgl-project#7795)
* fix: minor fix for modelopt weight load compatibility (sgl-project#7953)
* temporarily disable deepep-8-gpu and activate two small tests (sgl-project#7961)
* [fix]Update unitest for fp8_blockwise_scaled_grouped_mm kernel (sgl-project#7932)
* chore: bump sgl-kernel v0.2.5 (sgl-project#7964)
* Revert "[PD Disaggregation] replace transfer with batch transfer for better performance (sgl-project#7236)" (sgl-project#7968)
* chore: upgrade xgrammar 0.1.21 (sgl-project#7962)
* delete uselese code caused by fuse allreduce+add_rmsnorm pr (sgl-project#7970)
* Fix wrong gemm branch cause 250us slower (sgl-project#7969)
* [router] add worker abstraction (sgl-project#7960)
* chore: upgrade sgl-kernel 0.2.5 (sgl-project#7971)
* chore: bump v0.4.9.post2 (sgl-project#7963)
* [minor fix] llama4 hybrid memory (sgl-project#7950)
* [minor fix] SWA missing methods (sgl-project#7972)
* [script] update loogle test (sgl-project#7975)
* perf: add kimi k2 fused_moe tuning config for h20_3e
* [theta] perf: add kimi k2 fused_moe tuning config for h200
* [minor fix] SWA missing methods (sgl-project#7972)
* [script] update loogle test (sgl-project#7975)
* perf: add kimi k2 fused_moe tuning config for h30_3e
* docs: update README (sgl-project#7985)
* Overlap the gating function with shared experts in DeepSeek (sgl-project#7978)
* [BugFix] fix pre_reorder_triton_kernel default int32 issue (sgl-project#7814)
* [minor] Add server_args check for Llama4 with hybrid (sgl-project#7988)
* Tiny fix mooncake log warning wrong output (sgl-project#7952)
* [BugFix] add verify logit_bias to avoid crash because of IndexError  (sgl-project#7749)
* SWA Prefix Cache (sgl-project#7367)
* chore: remove unnecessary limits on quantization methods in test script (sgl-project#7997)
* Refactor dynamic LoRA update to fix incorrect handling of variant weight shapes (sgl-project#7844)
* Support for Phi-1.5 & Phi-2 models (sgl-project#7862)
* [Dockerfile] Multi-arch support for ROCm (sgl-project#7902)
* [CPU] fix no attribute 'can_fuse_mlp_allreduce' error (sgl-project#8010)
* perf: add kimi k2 fused_moe tuning config for h30_3e (sgl-project#8021)
* [ci] CI supports use cached models (sgl-project#7874)
* [Minor] Remove redundant print (sgl-project#8005)
* [Feature]TP Group Switching for PD-Multiplexing (sgl-project#7653)
* [Feature] CUDA Green Context Support (sgl-project#7649)
* Fix flaky CI: test_vlm_models (sgl-project#8006)
* Fix Bug 'get_cpu_copy not Implemented' in pd offloading mode (sgl-project#7982)
* prevent server crash from potential invalid grammar (sgl-project#7897)
* Setup workflow for releasing mi300x and mi350x dockers. (sgl-project#8035)
* fix: modality length mismatch with image_data (sgl-project#7887)
* Update CODEOWNERS (sgl-project#8044)
* perf: add qwen3-30b-a3b fused moe tuning config for h20
* [feat]Support fusion kernel for constructing quant input and scale factor for fp8_blockwise_scaled_grouped_mm (sgl-project#8023)
* feat: update multimodal data handling in engine entrypoint (sgl-project#8002)
* fix: remove redundant rotary embedding cache recomputation in MiniCPM (sgl-project#8022)
* Fix the input tools format and history tool_calls in OpenAI API  (sgl-project#6556)
* fix: resolve arm build issue (sgl-project#8052)
* concurrently load weights of DeepseekV2ForCausalLM (sgl-project#7943)
* H20 tune config for Kimi (sgl-project#8047)
* Update amd docker image. (sgl-project#8045)
* feat: replace Decord with video_reader-rs (sgl-project#5163)
* remove kv_a.congigous in DeepseekV2AttentionMLA (sgl-project#8058)
* update transformers to 4.53.2 (sgl-project#8029)
* Fix different device type adjustment in PP (sgl-project#7760)
* Use device_group for all_gather when disabling overlap scheduling (sgl-project#8001)
* Revert "feat: replace Decord with video_reader-rs" (sgl-project#8077)
* Fix CI xeon test with triton 3.3.1 (sgl-project#8086)
* fix greenctx stream compability (sgl-project#8090)
* [misc] update nvshmem and pin deepEP commit hash (sgl-project#8098)
* [Feature] Layer-wise Prefill (sgl-project#7634)
* [1/n] chore: decouple quantization implementation from vLLM dependency (sgl-project#7992)
* refactor: unify names of the feature field of MultimodalDataItem (sgl-project#8075)
* feat: add tp_rank, pp_rank and dp_rank labels for scheduler metrics (sgl-project#7597)
* [ci] limit cmake build nproc (sgl-project#8100)
* [ci] disable memory imbalance check for draft worker (sgl-project#8108)
* [Fix] ensure DeepGEMM is only enabled for FP8_W8A8 models (sgl-project#8110)
* [ci] recover 8-gpu deepep test (sgl-project#8105)
* Refactor: move all quantization-related code to `srt/layer/quantization` (sgl-project#7989)
* [kernel] opt moe align block kernel by block/warp scan algorithm (sgl-project#7884)
* Super tiny fix typo (sgl-project#8046)
* fix: update HostKVCache init to report correct msg when available memory is not enough (sgl-project#8102)
* [Hunyuan]: Fix Dense Model Support (sgl-project#8117)
* feat: add production metric for retracted requests due to insufficient kvcache (sgl-project#7030)
* refactor: simply MultimodalTokens logic (sgl-project#7924)
* [Fix][Ready]Fix register spilling in cutlass nvfp4 gemm kernel on Blackwell (sgl-project#8127)
* Feat: Support Granite 3.0 MoE in SGLang (sgl-project#7959)
* load draft model fix (sgl-project#7506)
* [CPU][Llama4] Fix Llama4 MoE inputs with "apply_router_weight_on_input"  (sgl-project#7889)
* [Quantization][w8a8_int8] Fix weight loading issue for w8a8_int8 path with "ignore" layer list in quantization config (sgl-project#7820)
* Hicache Storage Layer Prototype (sgl-project#7704)
* Revert "Fix different device type adjustment in PP" (sgl-project#8141)
* feat: enchance green context stream creation robust with backward compatibility (sgl-project#8136)
* fix compressed tensors WNA16 imports (sgl-project#8142)
* [Bugfix] Fix w8a8_int8 import error on NPU (sgl-project#8147)
* [3/n] chore: decouple AWQ implementation from vLLM dependency (sgl-project#8113)
* [router] Refactor router and policy traits with dependency injection (sgl-project#7987)
* [AMD] Add triton awq_dequantize kernel to support AWQ on ROCm (sgl-project#7661)
* [Doc] Steps to add a new attention backend (sgl-project#8155)
* chore: tune mem fraction static for vlm (sgl-project#6881)
* Support NVFP4 quantized dense models on AMD CDNA2/CDNA3 GPUs (sgl-project#7302)
* Feat: Support audio in Phi4-mm model (sgl-project#8048)
* [PD] Support non-MLA models PD different TP with DP attention (sgl-project#7931)
* [health_generate] fix: fix the /health_generate always success bug (sgl-project#8028)
* [router] router metrics cleanup (sgl-project#8158)
* [router] allow router to have empty workers (sgl-project#8160)
* Add GB200 wide-EP docker (sgl-project#8157)
* [1/N] MoE Refactor: refactor `select_experts` (sgl-project#7966)
* chore: bump sgl-kernel v0.2.6 (sgl-project#8165)
* chore: upgrade sgl-kernel 0.2.6 (sgl-project#8166)
* [theta] sync bailing
* Fix suffix mismatch for the metrics. (sgl-project#8168)
* Update README.md (sgl-project#8171)
* Clean up server args (sgl-project#8161)
* Fix LoRA buffer contamination during adapter eviction (sgl-project#8103)
* Fix Dockerfile.gb200 (sgl-project#8169)
* [router] add ut for worker and errors (sgl-project#8170)
* bugfix: fix sglang crash in NVIDIA MIG container (sgl-project#8167)
* Support start up LoRA server without initial adapters (sgl-project#8019)
* Clean warning logs for gate_proj loading in Lora (sgl-project#8172)
* Fix tuning_fused_moe_triton.py (sgl-project#8175)
* [Feature] Simple Improve Health Check Mechanism for Production-Grade Stability (sgl-project#8115)
* Add bf16 output option for dsv3_router_gemm kernel (sgl-project#7999)
* Enable FlashInfer support encoder models and add head_dim padding workaround (sgl-project#6230)
* Add get_hidden_dim to qwen3.py for correct lora (sgl-project#7312)
* feat: add h200 tp 16 kimi k2 moe config (sgl-project#8176)
* feat: add b200 tp 16 kimi k2 moe config (sgl-project#8178)
* fix moe gate dtype, fix tbo, fix fake dispatch (sgl-project#7825)
* Revert "[Feature] Simple Improve Health Check Mechanism for Production-Grade Stability" (sgl-project#8181)
* feat: update nccl 2.27.6 (sgl-project#8182)
* Feat: Support for Persimmon Model (sgl-project#7983)
* feat: add h200 tp 16 kimi k2 moe config (sgl-project#8183)
* Fix eagle3 cuda graph (sgl-project#8163)
* fix: fix the bug of loading Internvl3 (sgl-project#8067)
* Fix dtype error in CI (sgl-project#8197)
* Cherry-pick commit 2dc5de40 "perf: add bailing mo..." 到当前分支
* [router] add ut for pd request, metrics and config (sgl-project#8184)
* [feature] enable NPU CI (sgl-project#7935)
* [fix] fix modelopt fp4 on b200 (sgl-project#8195)
* chore: bump sgl-kernel v0.2.6.post1 (sgl-project#8200)
* Apply fused sorted token ids padding (sgl-project#8193)
* [Refactor] simplify multimodal data processing (sgl-project#8107)
* [theta] feat vl name
* [router] add ut for pd router (sgl-project#8208)
* [router] upgade router version to 0.1.6 (sgl-project#8209)
* Remve router gemm output dtype conversion (sgl-project#8204)
* chore: upgrade sgl-kernel 0.2.6.post1 (sgl-project#8202)
* [Feature] Add a test for Layer-wise Prefill (sgl-project#8231)
* docs: update 2025 h2 roadmap (sgl-project#8237)
* fix: retrieve mm token by modality, raise error if none (sgl-project#8221)
* [AMD] Remove vllm's scaled_fp8_quant and moe_sum when SGLANG_USE_AITER=1 (sgl-project#7484)
* [theta] tune h20 config for qwen3 235b
* [theta] tune h20 config for qwen3 235b
* fix: sgl-router remove dead code (sgl-project#8257)
* [fix] benchmark : routed_scaling_factor is None (sgl-project#8059)
* [Benchmark] add disable-auto-run param for hicache/bench_multiturn (sgl-project#7822)
* Preliminary Support for Qwen3XMLDetector (sgl-project#8260)
* chore: bump v0.4.9.post3 (sgl-project#8265)
* PullRequest: 178 perf: add qwen235b h20-3e fused moe kernel config
* [theta] tune h20 config for qwen3 480b
* Skip llama4 vision module loading when multimodal disabled (sgl-project#8272)
* PullRequest: 180 新增Qwen480B和Qwen235B在NVIDIA H20-3e上的Fused MoE Triton配置
* Fix sgl-kernel ci test (sgl-project#8284)
* [theta] tune h200 config for qwen3 480b
* Introduce Stable LoRA ID System for Overlapped Updates and Prefix Caching (sgl-project#8261)
* Hicache IO kernel refactoring (sgl-project#8264)
* bug fix and tag (sgl-project#8282)
* HiCache Fix (sgl-project#8288)
* [sgl-kernel] Opt per_token_quant_fp8 with warp reduce (sgl-project#8130)
* [router] add common ut infra to mock worker and app (sgl-project#8295)
* fix: workaround for deepgemm warmup issue (sgl-project#8302)
* [Performance][PD Disaggregation] optimize TokenToKVPoolAllocator by sorting free pages (sgl-project#8133)
* Fix the issue of incorrect finish reason in final stream response chunk returned during tool call (sgl-project#7708)
* fix: match chat-template for internvl3 (sgl-project#8262)
* Fix gemma3n with hybrid swa (sgl-project#8240)
* chore: upgrade sgl-kernel 0.2.7 (sgl-project#8304)
* fix: prevent crashes due to logit bias dimension mismatch (sgl-project#7685)
* feat(function call): complete utility method for KimiK2Detector and enhance documentation (sgl-project#8043)
* Fix incomplete tool call capture issue in streaming response of DeepSeek-V3 when enable MTP  (sgl-project#7562)
* [AMD] Pull latest image for AMD CI (sgl-project#8070)
* Pin the version of petit kernel to fix the APIs (sgl-project#8235)
* [bug] fix pd completion protocol for batching support (sgl-project#8317)
* [router] fix pd model completion request (sgl-project#8303)
* fix bug when eos_ids==0 (sgl-project#8315)
* [router] add endpoint unit test (sgl-project#8298)
* [code style] Clean dead triton kernel code in fused_moe and useless vllm_ops import (sgl-project#8310)
* chore: upgrade flashinfer v0.2.9rc1 (sgl-project#8301)
* [router] add streaming unit test (sgl-project#8299)
* [router] add request format unit test (sgl-project#8300)
* HiCache Storage TP Refinement (sgl-project#8307)
* breakdown kernel update (sgl-project#8334)
* support idle batch for TBO (sgl-project#8233)
* [Feature] Integrate quick allreduce and select the best allreduce implementation (sgl-project#6619)
* DP Enhancement (sgl-project#8280)
* fix: Fix failed functional tests https://github.com/meta-llama/llama-stack-evals (sgl-project#8266)
* [AMD] Add silu_and_mul, gelu_and_mul, gelu_tanh_and_mul, and gelu_quick kernels for AMD GPUs (sgl-project#7135)
* [CPU] Add tutorial docs for SGL on CPU (sgl-project#8000)
* chore: upgrade mooncake 0.3.5 (sgl-project#8341)
* [torch.compile bug] avoid biased_grouped_topk_impl func repeatedly triggering `torch.compile` in forward pass (sgl-project#8353)
* [P/D] Support ipv6 in P/D scenario (sgl-project#7858)
* Add H20-3e fused MoE kernel tuning configs for Qwen3-Coder-480B-A35B-Instruct (sgl-project#8344)
* [Bugfix][Feat] Add XML-ish grammar in EBNFComposer and fix misc bugs in Qwen3 detector (sgl-project#8357)
* Clean up server_args, triton cache manager (sgl-project#8332)
* fix: upgrade nccl version (sgl-project#8359)
* [Feat] Add reasoning parser for Qwen/Qwen3-235B-A22B-Thinking-2507 (sgl-project#8363)
* fix: kimi k2 xgrammar crash (sgl-project#8367)
* Fix FP4 MoE accuracy from missing routed_scaling_factor (sgl-project#8333)
* [CI] Fix flaky threshold (sgl-project#8370)
* chore: bump v0.4.9.post4 (sgl-project#8305)
* Fix test_moe_fused_gate_combined sgl-kernel ci test (sgl-project#8374)
* Uodate Dockerfile.gb200 to latest sglang (sgl-project#8356)
* chore: improve mmmu benchmark (sgl-project#7000)
* Save peak memory in logits processor (sgl-project#8343)
* Extract update_weights from RL Engine to SGLang to keep simplicity and fix torch reduce (sgl-project#8267)
* chore: improvements on mm_utils (sgl-project#7737)
* vlm: optimize tensor transport (sgl-project#6003)
* Tiny assert EPLB is used together with expert parallel (sgl-project#8381)
* model: support intern-s1 (sgl-project#8350)
* Add perf tests for LoRA (sgl-project#8314)
* Remove slot usage in code to be backward-compatible with python 3.9 (sgl-project#8396)
* Add docker release flow for gb200 (sgl-project#8394)
* HiCache, check before terminate prefetching (sgl-project#8372)
* Add nvfp4 scaled mm benchmark. (sgl-project#8401)
* Urgent Fix: intern-s1 chat-template matching (sgl-project#8403)
* Tool to dump and compare internal activation tensors (sgl-project#7976)
* Minor tool for comparison of benchmark results (sgl-project#7974)
* Fix bench script making input data on L2 cache (sgl-project#7739)
* [NVIDIA] Add Flashinfer MoE blockscale fp8 backend (sgl-project#8036)
* Update Cutlass in sgl-kernel to v4.1 (sgl-project#8392)
* fix: minor fix TransportProxyTensor under tp (sgl-project#8382)
* [router] add different policies for p node and d node (sgl-project#8395)
* Add A800 fused MoE kernel tuning configs for Qwen3-Coder-480B-A35B-Instruct (sgl-project#8351)
* fix: fix the missing metrics on non-rank0 nodes (sgl-project#7720)
* [2/N] MoE Refactor: Unify weight loader and quant methods (sgl-project#8397)
* Use FlashInfer FP4 gemm. (sgl-project#8241)
* Support precomputed_embeddings for Llama 4 (sgl-project#8156)
* [hotfix] fix merge conflicts in FlashInferEPMoE (sgl-project#8405)
* chore: update CODEOWNERS (sgl-project#8407)
* chore: upgrade flashinfer v0.2.9rc2 (sgl-project#8406)
* Support triton kernels v3.4.0 for fused_moe (sgl-project#8258)
* [Bugfix] Prevent PD server crash from invalid grammar (sgl-project#8062)
* Change to use native arm runner (sgl-project#8414)
* Support overlapped lora updates  (sgl-project#8213)
* Support ue8m0 for triton quant kernel (sgl-project#7603)
* Fix: Improve test_openai_function_calling unit test and fix reasoning_parser.py think_start_token logic (sgl-project#8316)
* bugfix: Fix multiple finish_reason chunks and tool_calls finish reason check (sgl-project#8417)
* Fix test_openai_server (sgl-project#8419)
* Fix docker buildx push error (sgl-project#8425)
* bugfix: Fix XGrammar backend to use model's EOS tokens for constrained generation (sgl-project#8422)
* [router] improve router logs and request id header (sgl-project#8415)
* [feat] Support different attention backends for prefill and decode  (sgl-project#6338)
* chore: bump transformer to 4.54.0 (sgl-project#8416)
* [PD] Fix abort_request for PD disaggregation (sgl-project#8352)
* GLM-4.5 Model Support (sgl-project#8224)
* Remove zstd compression for building Dockerfile.gb200 (sgl-project#8442)
* doc: add bench_one_batch_server in the benchmark doc (sgl-project#8441)
* GLM-4.5 Model Support Follow-up (sgl-project#8445)
* fix GLM4_MOE launch with compressed_tensor quant model (sgl-project#8456)
* Fix per_token_group_quant_8bit when hidden_dim // group_size is not divided by 4. (sgl-project#8449)
* Revert "[kernel] opt moe align block kernel by block/warp scan algorithm" (sgl-project#8457)
* chore: bump v0.4.9.post5 (sgl-project#8458)
* fix:reorder topk experts to ensure shared expert replaces minimal score (sgl-project#8125)
* perf: add kimi k2 h200 fused moe config (extracted from theta-asap-sglang-049)
* Cherry-pick commit 4a75e015 "Add draft model fuse..." 到当前分支
* Update PR template (sgl-project#8465)
* feat: throttle requests at scheduler based on --max_queued_requests (sgl-project#7565)
* [theta] tuning script for glm4 moe
* perf: add fused moe kernel config glm4.5,h20-3e,tp8
* [theta] tuning script for glm4 moe h20
* fix: update dep (sgl-project#8467)
* [NVIDIA] Change to use `num_local_experts` (sgl-project#8453)
* Fix parsing ChatCompletionMessage (sgl-project#7273)
* [3/N] MoE Refactor: Simplify DeepEP Output (sgl-project#8421)
* feat: support glm4 tuning (sgl-project#8473)
* Fix DEEPEP BF16 compatibility for Deepseek Style model like GLM 4.5 (sgl-project#8469)
* Update codeowner (sgl-project#8476)
* chore: add glm4 fp8 tp8 config (sgl-project#8478)
* chore: add glm 4.5 fp8 tp4 config (sgl-project#8480)
* [CI]Add genai-bench Performance Validation for PD Router (sgl-project#8477)
* Update CODEOWNERS (sgl-project#8485)
* Rename the last step in pr-test.yml as pr-test-finish (sgl-project#8486)
* Reduce memory usage for fp4 moe (sgl-project#8413)
* Tiny add warnings for DeepEP when it is suboptimal (sgl-project#8426)
* Support colocating requests (sgl-project#7973)
* Fix incorrect KV cache allocation for MTP models. (sgl-project#8482)
* Add PVC and update resource limits in k8s config (sgl-project#8489)
* chore: bump v0.4.9.post6 (sgl-project#8517)
* Always trigger pr-test (sgl-project#8527)
* Update README.md (sgl-project#8528)
* [sgl-kernel performace] fix fp8 quant kernels dispatch __nv_fp8_e4m3 bug to improve performance 10%-20% (sgl-project#8499)
* Update cutlass_moe.py (sgl-project#8535)
* Fix moe align kernel test (sgl-project#8531)
* Split the scheduler into multiple mixin classes to reduce the file size (sgl-project#8483)
* bring back kimi vl ci (sgl-project#8537)
* fix: temporarily disable cuda-ipc for mm data tensor (sgl-project#8431)
* Support EPLB in FusedMoE (sgl-project#8448)
* feat(hicache): support file backend reading directory config form env. (sgl-project#8498)
* feature(pd-hicache): Prefill instances support reusing the RemoteStorage Cache via HiCache. (sgl-project#8516)
* [router] allow longer time out for router e2e (sgl-project#8560)
* Update cutlass_moe.py (sgl-project#8545)
* Update CODEOWNERS (sgl-project#8562)
* [feature] [sgl-router] Add a dp-aware routing strategy (sgl-project#6869)
* [Hot-Fix] moe_aligned_block_size CI failed in AMD (sgl-project#8461)
* Cherry-pick commit 4fdc06a9 "add fp8a8 kimi-k2 dr..." 到当前分支
* [Model] Add support for Arcee Foundational Model (sgl-project#8154)
* Revert "Fix the input tools format and history tool_calls in OpenAI API  (sgl-project#6556)" (sgl-project#8584)
* Add hf3fs support for hicache storage (based on sgl-project#7704) (sgl-project#7280)
* [router] migrate router from actix to axum (sgl-project#8479)
* [Fix]Fix index oob in get_group_gemm_starts kernel. (sgl-project#8564)
* Bump transfomers to 4.54.1 to fix Gemma cache issue. (sgl-project#8541)
* Add GKE's default CUDA runtime lib location to PATH and LD_LIBRARY_PATH. (sgl-project#8544)
* Bu
E864
g: Fix google gemma3n-mm audio input not working bug (sgl-project#8365)
* update sgl-kernel for EP: kernel part  (sgl-project#8514)
* chore: bump sgl-kernel v0.2.8 (sgl-project#8599)
* [bugfix] Fix 2 minor bugs in the hicache storage layer (sgl-project#8404)
* fix incorrect increase of hit count (sgl-project#8533)
* Support l3 cache (mooncake store) for hiradix cache (sgl-project#7211)
* [theta] Conditionally import HiCacheHF3FS sgl-project#8598
* update sgl-kernel for EP: python part (sgl-project#8550)
* add SVG logo (sgl-project#8603)
* [4/N] MoE Refactor: Unified Triton Kernel for FusedMoE and EPMoE (sgl-project#8515)
* fix: fork should not run pypi router (sgl-project#8604)
* model: support Step3V (sgl-project#8583)
* [Feature] Hybrid EP and TP (sgl-project#8590)
* chore: bump v0.4.10 (sgl-project#8608)
* [PD] Use batch transfer for rdma transport and add notes for mnnvl usage (sgl-project#8595)
* [bugifx] QWen-1M context support[2/3] using current cuda stream in the DCA's kernel for bugfix. (sgl-project#8611)
* Fix hf3fs_fuse import error (sgl-project#8623)
* Update step3v default config (sgl-project#8626)
* [ci] fix genai-bench execution cmd (sgl-project#8629)
* [router] update router pypi version (sgl-project#8628)
* [Optimization][Perf] Disable the GC during CUDA graph capture to speed up by up to 3x (sgl-project#8577)
* Fix typos in py_test/test_launch_server.py (sgl-project#6227)
* misc: Remove debug print to logger.info (sgl-project#8633)
* SGLang HiCache NIXL Connector (sgl-project#8488)
* [bug] remove pdlb from minilb since its no longer available (sgl-project#8634)
* [bugfix] Fix flashinfer cutlass EP moe after MoE refactor (sgl-project#8630)
* Conditionally import HiCacheHF3FS (sgl-project#8598)
* TRTLLM Gen MLA Decode Kernel Integration (same as sgl-project#7938) (sgl-project#8632)
* Fix nan value generated after custom all reduce (sgl-project#8532)
* Revert "Fix nan value generated after custom all reduce (sgl-project#8532)" (sgl-project#8642)
* Feature/modelscope model download (sgl-project#8083)
* chore: speedup NPU CI by cache (sgl-project#8270)
* [Bugfix] fix w8a8_int8 load issue (sgl-project#8308)
* [bugfix] fix router python parser for pd urls (sgl-project#8644)
* [router] add basic usage doc (sgl-project#8640)
* [router] upgrade router version to 0.1.8 (sgl-project#8645)
* [NVIDIA] Enable Flashinfer MoE blockscale fp8 backend for TP MoE (sgl-project#8450)
* HiCache, fixing hash value indexing (sgl-project#8636)
* Interface change for kvcache io to support page first layout (sgl-project#8318)
* Update batch size limitation of dsv3_router_gemm kernel to 16 (sgl-project#8051)
* chore: bump v0.4.10.post1 (sgl-project#8652)
* Add hf3fs_utils.cpp to package-data (sgl-project#8653)
* Fix chat template handling for OpenAI serving (sgl-project#8635)
* Bug: apply final_hidden_states*=self.routed_scaling_factor at MoE lay… (sgl-project#8511)
* [5/N] MoE Refactor: Update MoE parallelism arguments (sgl-project#8658)
* Increase tolerance to address CI failures (sgl-project#8643)
* [Kimi K2] dsv3_router_gemm supports NUM_EXPERTS == 384 (sgl-project#8013)
* [DOC]Update sgl-kernel README (sgl-project#8665)
* fix per token cuda kernel hidden dim cannot divide by 16 (sgl-project#8543)
* fix arg typo for --disaggregation-transfer-backend (sgl-project#8664)
* [fix] fix pd disagg error of vlms (sgl-project#8094)
* Disable tp for shared experts under expert parallelism for GLM4.5 model (sgl-project#8647) (sgl-project#8647)
* [bugfix] Fix page size for create_flashmla_kv_indices_triton() for cutlass mla (sgl-project#8685)
* [bug] limit bootstrap room to to [0, 2^63 - 1] (sgl-project#8684)
* Update CODEOWNERS (sgl-project#8686)
* Fix deepgemm masked grouped gemm jit compile (sgl-project#8679)
* Fix FP8 block quantization when N or K is not multiples of 128 (sgl-project#8648)
* bugfix(hicache): Fix 'MooncakeStore' not defined error. (sgl-project#8668)
* upgrade xgrammar 0.1.22 (sgl-project#8522)
* [bugfix] Add 'disaggregation_mode' parameter to warmup function when compile deep_gemm manually (sgl-project#8618)
* Add support for NCCL symmetric memory for TP allreduces (sgl-project#8238)
* [1/2] sgl-kernel: Fuse routed scaling factor into select_experts (sgl-project#8364)
* chore(gb200): update dockerfile to handle fp4 disaggregation (sgl-project#8694)
* [bugfix] Apply routed scaling factor to cutlass_fused_experts_fp8 (sgl-project#8688)
* Fix: resolve prefill of retracted request out-of-memory issue when ignore_eos is enabled (sgl-project#7434)
* model: adapt mllama4 to VisionAttention (sgl-project#8512)
* Add tensor.detach() back to update weight util (sgl-project#8691)
* [Doc] Polish sgl-kernel readme for cu126 build error (sgl-project#8704)
* [theta] merge 0802-3
* Revert "[1/2] sgl-kernel: Fuse routed scaling factor into select_experts" (sgl-project#8706)
* [router] minor code clean up and and refactoring (sgl-project#8711)
* [Bug] fix green context's incompatibility with `cuda < 12.4` (sgl-project#8701)
* chore: bump sgl-kernel v0.2.9 (sgl-project#8713)
* Remove assertions about per group quant fp8 (sgl-project#8717)
* [FIX] Fix the nightly CI by disabling swa mem pool for gemma2 (sgl-project#8693)
* Fix triton moe error caused by TopK refactor (sgl-project#8705)
* [router] Implement HTTP Dependency Injection Pattern for Router System (sgl-project#8714)
* [Feature] Radix Tree in C++ (sgl-project#7369)
* [Perf]Use Cooperative Schedule for H100 & H200 & H800 in fp8_blockwise_scaled_grouped_mm (sgl-project#8722)
* Fix fused MoE when `routed_scaling_factor is None` (sgl-project#8709)
* Tiny fix CI pytest error (sgl-project#8524)
* [hotfix] fix mixtral with tensor-level compressed-tensor quantization (sgl-project#8721)
* Support limiting max loaded loras in CPU. (sgl-project#8650)
* Reduce memory accumulation in long-running server (sgl-project#8306)
* HiCache storage, style change and bug fix (sgl-project#8719)
* [feat] support minimum token load balance in dp attention (sgl-project#7379)
* Do layernorm before allgather for DP attention (sgl-project#8631)
* [fix] Fix divide by zero error for llama4. (sgl-project#8683)
* feat: Add new moe triton for NVIDIA RTX 6000 Ada (sgl-project#8547)
* [Improvements] Merge health check route (sgl-project#8444)
* chore: bump sgl-kernel 0.3.0 with torch 2.8.0 (sgl-project#8718)
* Save cuda graph memory for fa3 (sgl-project#8567)
* [CUDA Graph] save cuda graph memory by using next_token_logits_buffer (sgl-project#8579)
* [DP] fix the compatibility issue between DP attention and `--attention-backend triton` (sgl-project#8723)
* chore: bump v0.4.10.post2 (sgl-project#8727)
* feat: Support DP Attention for step3_vl (sgl-project#8699)
* [RL] fix update weight for FusedMoE with EP (sgl-project#8676)
* use fp32 for e_score_correction_bias in GLM-4.5 (sgl-project#8729)
* Fix triton kernels topk with keyword arguments (sgl-project#8732)
* feat: support cutlass_moe_fp8 kernel for fusedmoe in sm90 (sgl-project#8678)
* Fix the missing 'lof' choice of --schedule-policy server args (sgl-project#7114)
* fix args typo in memory_pool_host (sgl-project#8662)
* [CI] Do not trigger pd-disaggregation CI in draft PR (sgl-project#8737)
* [MoE] Enable `renormalize=False` in Triton kernels (sgl-project#8735)
* Replace torch.jit.script with torch.compile in get_masked_input_and_mask to fix benchmark underreporting (sgl-project#8733)
* Fix bug of refactoring TopKOutput in w4afp8 (sgl-project#8745)
* Rename lora_path to lora_id in batches (sgl-project#8437)
* [sgl-kernel] avoid per_token_quant_fp8.cu hardcode sm_count (sgl-project#8738)
* [CI] Ascend NPU CI enhancement (sgl-project#8294)
* [bugfix] fix import path in HiCacheController (sgl-project#8749)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants
0