8000 DOC fix random_state in several example for reproducibility by TamaraAtanasoska · Pull Request #27153 · scikit-learn/scikit-learn · GitHub
[go: up one dir, main page]

Skip to content

DOC fix random_state in several example for reproducibility #27153

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Sep 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 9 additions & 9 deletions examples/cluster/plot_linkage_comparison.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,28 +33,28 @@
from sklearn import cluster, datasets
from sklearn.preprocessing import StandardScaler

np.random.seed(0)

# %%
# Generate datasets. We choose the size big enough to see the scalability
# of the algorithms, but not too big to avoid too long running times

n_samples = 1500
noisy_circles = datasets.make_circles(n_samples=n_samples, factor=0.5, noise=0.05)
noisy_moons = datasets.make_moons(n_samples=n_samples, noise=0.05)
blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)
no_structure = np.random.rand(n_samples, 2), None
noisy_circles = datasets.make_circles(
n_samples=n_samples, factor=0.5, noise=0.05, random_state=170
)
noisy_moons = datasets.make_moons(n_samples=n_samples, noise=0.05, random_state=170)
blobs = datasets.make_blobs(n_samples=n_samples, random_state=170)
rng = np.random.RandomState(170)
no_structure = rng.rand(n_samples, 2), None

# Anisotropicly distributed data
random_state = 170
X, y = datasets.make_blobs(n_samples=n_samples, random_state=random_state)
X, y = datasets.make_blobs(n_samples=n_samples, random_state=170)
transformation = [[0.6, -0.6], [-0.4, 0.8]]
X_aniso = np.dot(X, transformation)
aniso = (X_aniso, y)

# blobs with varied variances
varied = datasets.make_blobs(
n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state
n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=170
)

# %%
Expand Down
8 changes: 6 additions & 2 deletions examples/preprocessing/plot_all_scaling.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,11 +102,15 @@
),
(
"Data after quantile transformation (uniform pdf)",
QuantileTransformer(output_distribution="uniform").fit_transform(X),
QuantileTransformer(
output_distribution="uniform", random_state=42
).fit_transform(X),
),
(
"Data after quantile transformation C71A (gaussian pdf)",
QuantileTransformer(output_distribution="normal").fit_transform(X),
QuantileTransformer(
output_distribution="normal", random_state=42
).fit_transform(X),
),
("Data after sample-wise L2 normalizing", Normalizer().fit_transform(X)),
]
Expand Down
4 changes: 2 additions & 2 deletions examples/preprocessing/plot_discretization_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ def get_name(estimator):
(
make_pipeline(
StandardScaler(),
KBinsDiscretizer(encode="onehot"),
KBinsDiscretizer(encode="onehot", random_state=0),
LogisticRegression(random_state=0),
),
{
Expand All @@ -85,7 +85,7 @@ def get_name(estimator):
(
make_pipeline(
StandardScaler(),
KBinsDiscretizer(encode="onehot"),
KBinsDiscretizer(encode="onehot", random_state=0),
LinearSVC(random_state=0, dual="auto"),
),
{
Expand Down
0