8000 [MRG]: Fixes Pipeline steps bug by thomasjpfan · Pull Request #12659 · scikit-learn/scikit-learn · GitHub
[go: up one dir, main page]

Skip to content

[MRG]: Fixes Pipeline steps bug #12659

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Nov 26, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions doc/whats_new/v0.20.rst
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,12 @@ enhancements to features released in 0.20.0.
Changelog
---------

:mod:`sklearn.pipeline`
.......................

- |Fix| Fixed a regression in :class:`pipeline.Pipeline` where the ``steps``
parameter may not have been updated correctly when a step is set to ``None``
or ``'passthrough'``. :user:`Thomas Fan <thomasjpfan>`.


.. _changes_0_20_1:
Expand Down
23 changes: 11 additions & 12 deletions sklearn/pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -184,9 +184,9 @@ def _iter(self, with_final=True):
if not with_final:
stop -= 1

for name, trans in islice(self.steps, 0, stop):
for idx, (name, trans) in enumerate(islice(self.steps, 0, stop)):
if trans is not None and trans != 'passthrough':
yield name, trans
yield idx, name, trans

@property
def _estimator_type(self):
Expand Down Expand Up @@ -219,8 +219,7 @@ def _fit(self, X, y=None, **fit_params):
step, param = pname.split('__', 1)
fit_params_steps[step][param] = pval
Xt = X
for step_idx, (name, transformer) in enumerate(
self._iter(with_final=False)):
for step_idx, name, transformer in self._iter(with_final=False):
if hasattr(memory, 'location'):
# joblib >= 0.12
if memory.location is None:
Expand Down Expand Up @@ -341,7 +340,7 @@ def predict(self, X, **predict_params):
y_pred : array-like
"""
Xt = X
for name, transform in self._iter(with_final=False):
for _, name, transform in self._iter(with_final=False):
Xt = transform.transform(Xt)
return self.steps[-1][-1].predict(Xt, **predict_params)

Expand Down Expand Up @@ -390,7 +389,7 @@ def predict_proba(self, X):
y_proba : array-like, shape = [n_samples, n_classes]
"""
Xt = X
for name, transform in self._iter(with_final=False):
for _, name, transform in self._iter(with_final=False):
Xt = transform.transform(Xt)
return self.steps[-1][-1].predict_proba(Xt)

Expand All @@ -409,7 +408,7 @@ def decision_function(self, X):
y_score : array-like, shape = [n_samples, n_classes]
"""
Xt = X
for name, transform in self._iter(with_final=False):
for _, name, transform in self._iter(with_final=False):
Xt = transform.transform(Xt)
return self.steps[-1][-1].decision_function(Xt)

Expand All @@ -428,7 +427,7 @@ def predict_log_proba(self, X):
y_score : array-like, shape = [n_samples, n_classes]
"""
Xt = X
for name, transform in self._iter(with_final=False):
for _, name, transform in self._iter(with_final=False):
Xt = transform.transform(Xt)
return self.steps[-1][-1].predict_log_proba(Xt)

Expand Down Expand Up @@ -457,7 +456,7 @@ def transform(self):

def _transform(self, X):
Xt = X
for _, transform in self._iter():
for _, _, transform in self._iter():
Xt = transform.transform(Xt)
return Xt

Expand All @@ -481,14 +480,14 @@ def inverse_transform(self):
"""
# raise AttributeError if necessary for hasattr behaviour
# XXX: Handling the None case means we can't use if_delegate_has_method
for _, transform in self._iter():
for _, _, transform in self._iter():
transform.inverse_transform
return self._inverse_transform

def _inverse_transform(self, X):
Xt = X
reverse_iter = reversed(list(self._iter()))
for _, transform in reverse_iter:
for _, _, transform in reverse_iter:
Xt = transform.inverse_transform(Xt)
return Xt

Expand All @@ -515,7 +514,7 @@ def score(self, X, y=None, sample_weight=None):
score : float
"""
Xt = X
for name, transform in self._iter(with_final=False):
for _, name, transform in self._iter(with_final=False):
Xt = transform.transform(Xt)
score_params = {}
if sample_weight is not None:
Expand Down
21 changes: 21 additions & 0 deletions sklearn/tests/test_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -574,6 +574,27 @@ def test_pipeline_named_steps():
assert pipeline.named_steps.mult is mult2


@pytest.mark.parametrize('passthrough', [None, 'passthrough'])
def test_pipeline_correctly_adjusts_steps(passthrough):
X = np.array([[1]])
y = np.array([1])
mult2 = Mult(mult=2)
mult3 = Mult(mult=3)
mult5 = Mult(mult=5)

pipeline = Pipeline([
('m2', mult2),
('bad', passthrough),
('m3', mult3),
('m5', mult5)
])

pipeline.fit(X, y)
expected_names = ['m2', 'bad', 'm3', 'm5']
actual_names = [name for name, _ in pipeline.steps]
assert expected_names == actual_names


@pytest.mark.parametrize('passthrough', [None, 'passthrough'])
def test_set_pipeline_step_passthrough(passthrough):
X = np.array([[1]])
Expand Down
0