8000 test_sag_regressor_computed_correctly failure on Python 3.7 Linux Azure · Issue #15818 · scikit-learn/scikit-learn · GitHub
[go: up one dir, main page]

Skip to content
test_sag_regressor_computed_correctly failure on Python 3.7 Linux Azure #15818
Closed
@hmaarrfk

Description

@hmaarrfk

https://dev.azure.com/conda-forge/feedstock-builds/_build/results?buildId=101693

____________________ test_sag_regressor_computed_correctly _____________________
[gw1] linux -- Python 3.7.3 $PREFIX/bin/python

    @pytest.mark.filterwarnings('ignore:The max_iter was reached')
    def test_sag_regressor_computed_correctly():
        """tests if the sag regressor is computed correctly"""
        alpha = .1
        n_features = 10
        n_samples = 40
        max_iter = 50
        tol = .000001
        fit_intercept = True
        rng = np.random.RandomState(0)
        X = rng.normal(size=(n_samples, n_features))
        w = rng.normal(size=n_features)
        y = np.dot(X, w) + 2.
        step_size = get_step_size(X, alpha, fit_intercept, classification=False)
    
        clf1 = Ridge(fit_intercept=fit_intercept, tol=tol, solver='sag',
                     alpha=alpha * n_samples, max_iter=max_iter)
        clf2 = clone(clf1)
    
        clf1.fit(X, y)
        clf2.fit(sp.csr_matrix(X), y)
    
        spweights1, spintercept1 = sag_sparse(X, y, step_size, alpha,
                                              n_iter=max_iter,
                                              dloss=squared_dloss,
                                              fit_intercept=fit_intercept)
    
        spweights2, spintercept2 = sag_sparse(X, y, step_size, alpha,
                                              n_iter=max_iter,
                                              dloss=squared_dloss, sparse=True,
                                              fit_intercept=fit_intercept)
    
        assert_array_almost_equal(clf1.coef_.ravel(),
                                  spweights1.ravel(),
>                                 decimal=3)
E       AssertionError: 
E       Arrays are not almost equal to 3 decimals
E       
E       Mismatch: 10%
E       Max absolute difference: 0.00238873
E       Max relative difference: 0.00495185
E        x: array([-0.467, -0.967,  0.652,  0.318, -1.616,  0.306,  0.711,  0.068,
E              -0.238, -0.634])
E        y: array([-0.468, -0.969,  0.653,  0.319, -1.616,  0.305,  0.711,  0.068,
E              -0.239, -0.633])

Building scikit-learn 0.22 on conda-forge conda-forge/scikit-learn-feedstock#113

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      0