8000 DOC TfidfVectorizer, CountVectorizer fixed_vocabulary_ documentation … · scikit-learn/scikit-learn@ef8e3c9 · GitHub
[go: up one dir, main page]

Skip to content

Commit ef8e3c9

Browse files
mandalbiswadipqinhanmin2014
authored andcommitted
DOC TfidfVectorizer, CountVectorizer fixed_vocabulary_ documentation (#14372)
1 parent c899367 commit ef8e3c9

File tree

1 file changed

+8
-0
lines changed

1 file changed

+8
-0
lines changed

sklearn/feature_extraction/text.py

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -825,6 +825,10 @@ class CountVectorizer(BaseEstimator, VectorizerMixin):
825825
vocabulary_ : dict
826826
A mapping of terms to feature indices.
827827
828+
fixed_vocabulary_: boolean
829+
True if a fixed vocabulary of term to indices mapping
830+
is provided by the user
831+
828832
stop_words_ : set
829833
Terms that were ignored because they either:
830834
@@ -1497,6 +1501,10 @@ class TfidfVectorizer(CountVectorizer):
14971501
vocabulary_ : dict
14981502
A mapping of terms to feature indices.
14991503
1504+
fixed_vocabulary_: boolean
1505+
True if a fixed vocabulary of term to indices mapping
1506+
is provided by the user
1507+
15001508
idf_ : array, shape (n_features)
15011509
The inverse document frequency (IDF) vector; only defined
15021510
if ``use_idf`` is True.

0 commit comments

Comments
 (0)
0