1
1
import numpy as np
2
- import scipy . sparse as sp
2
+ import pytest
3
3
4
4
from sklearn .datasets import make_regression
5
5
from sklearn .kernel_ridge import KernelRidge
6
6
from sklearn .linear_model import Ridge
7
7
from sklearn .metrics .pairwise import pairwise_kernels
8
8
from sklearn .utils ._testing import assert_array_almost_equal , ignore_warnings
9
+ from sklearn .utils .fixes import CSC_CONTAINERS , CSR_CONTAINERS
9
10
10
11
X , y = make_regression (n_features = 10 , random_state = 0 )
11
- Xcsr = sp .csr_matrix (X )
12
- Xcsc = sp .csc_matrix (X )
13
12
Y = np .array ([y , y ]).T
14
13
15
14
@@ -19,23 +18,15 @@ def test_kernel_ridge():
19
18
assert_array_almost_equal (pred , pred2 )
20
19
21
20
22
- def test_kernel_ridge_csr ():
21
+ @pytest .mark .parametrize ("sparse_container" , [* CSR_CONTAINERS , * CSC_CONTAINERS ])
22
+ def test_kernel_ridge_sparse (sparse_container ):
23
+ X_sparse = sparse_container (X )
23
24
pred = (
24
25
Ridge (alpha = 1 , fit_intercept = False , solver = "cholesky" )
25
- .fit (Xcsr , y )
26
- .predict (Xcsr )
26
+ .fit (X_sparse , y )
27
+ .predict (X_sparse )
27
28
)
28
- pred2 = KernelRidge (kernel = "linear" , alpha = 1 ).fit (Xcsr , y ).predict (Xcsr )
29
- assert_array_almost_equal (pred , pred2 )
30
-
31
-
32
- def test_kernel_ridge_csc ():
33
- pred = (
34
- Ridge (alpha = 1 , fit_intercept = False , solver = "cholesky" )
35
- .fit (Xcsc , y )
36
- .predict (Xcsc )
37
- )
38
- pred2 = KernelRidge (kernel = "linear" , alpha = 1 ).fit (Xcsc , y ).predict (Xcsc )
29
+ pred2 = KernelRidge (kernel = "linear" , alpha = 1 ).fit (X_sparse , y ).predict (X_sparse )
39
30
assert_array_almost_equal (pred , pred2 )
40
31
41
32
0 commit comments