@@ -1620,6 +1620,15 @@ def _ndcg_sample_scores(y_true, y_score, k=None, ignore_ties=False):
16201620 return gain
16211621
16221622
1623+ @validate_params (
1624+ {
1625+ "y_true" : ["array-like" ],
1626+ "y_score" : ["array-like" ],
1627+ "k" : [Interval (Integral , 1 , None , closed = "left" ), None ],
1628+ "sample_weight" : ["array-like" , None ],
1629+ "ignore_ties" : ["boolean" ],
1630+ }
1631+ )
16231632def ndcg_score (y_true , y_score , * , k = None , sample_weight = None , ignore_ties = False ):
16241633 """Compute Normalized Discounted Cumulative Gain.
16251634
@@ -1633,15 +1642,15 @@ def ndcg_score(y_true, y_score, *, k=None, sample_weight=None, ignore_ties=False
16331642
16341643 Parameters
16351644 ----------
1636- y_true : ndarray of shape (n_samples, n_labels)
1645+ y_true : array-like of shape (n_samples, n_labels)
16371646 True targets of multilabel classification, or true scores of entities
16381647 to be ranked. Negative values in `y_true` may result in an output
16391648 that is not between 0 and 1.
16401649
16411650 .. versionchanged:: 1.2
16421651 These negative values are deprecated, and will raise an error in v1.4.
16431652
1644- y_score : ndarray of shape (n_samples, n_labels)
1653+ y_score : array-like of shape (n_samples, n_labels)
16451654 Target scores, can either be probability estimates, confidence values,
16461655 or non-thresholded measure of decisions (as returned by
16471656 "decision_function" on some classifiers).
@@ -1650,7 +1659,7 @@ def ndcg_score(y_true, y_score, *, k=None, sample_weight=None, ignore_ties=False
16501659 Only consider the highest k scores in the ranking. If `None`, use all
16511660 outputs.
16521661
1653- sample_weight : ndarray of shape (n_samples,), default=None
1662+ sample_weight : array-like of shape (n_samples,), default=None
16541663 Sample weights. If `None`, all samples are given the same weight.
16551664
16561665 ignore_ties : bool, default=False
0 commit comments