@@ -2864,6 +2864,14 @@ def log_loss(
28642864 return _weighted_sum (loss , sample_weight , normalize )
28652865
28662866
2867+ @validate_params (
2868+ {
2869+ "y_true" : ["array-like" ],
2870+ "pred_decision" : ["array-like" ],
2871+ "labels" : ["array-like" , None ],
2872+ "sample_weight" : ["array-like" , None ],
2873+ }
2874+ )
28672875def hinge_loss (y_true , pred_decision , * , labels = None , sample_weight = None ):
28682876 """Average hinge loss (non-regularized).
28692877
@@ -2883,11 +2891,11 @@ def hinge_loss(y_true, pred_decision, *, labels=None, sample_weight=None):
28832891
28842892 Parameters
28852893 ----------
2886- y_true : array of shape (n_samples,)
2894+ y_true : array-like of shape (n_samples,)
28872895 True target, consisting of integers of two values. The positive label
28882896 must be greater than the negative label.
28892897
2890- pred_decision : array of shape (n_samples,) or (n_samples, n_classes)
2898+ pred_decision : array-like of shape (n_samples,) or (n_samples, n_classes)
28912899 Predicted decisions, as output by decision_function (floats).
28922900
28932901 labels : array-like, default=None
0 commit comments