8000 DOC Ensures that SimpleImputer passes numpydoc validation (#21077) · scikit-learn/scikit-learn@07a9dc9 · GitHub
[go: up one dir, main page]

Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 07a9dc9

Browse files
jmloyolaglemaitre
andauthored
DOC Ensures that SimpleImputer passes numpydoc validation (#21077)
Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com>
1 parent f71c031 commit 07a9dc9

File tree

2 files changed

+28
-26
lines changed

2 files changed

+28
-26
lines changed

maint_tools/test_docstrings.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,6 @@
3939
"SGDOneClassSVM",
4040
"SGDRegressor",
4141
"SelfTrainingClassifier",
42-
"SimpleImputer",
4342
"SparseRandomProjection",
4443
"SpectralBiclustering",
4544
"SpectralClustering",

sklearn/impute/_base.py

Lines changed: 28 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -134,7 +134,7 @@ class SimpleImputer(_BaseImputer):
134134
nullable integer dtypes with missing values, `missing_values`
135135
should be set to `np.nan`, since `pd.NA` will be converted to `np.nan`.
136136
137-
strategy : string, default='mean'
137+
strategy : str, default='mean'
138138
The imputation strategy.
139139
140140
- If "mean", then replace missing values using the mean along
@@ -150,25 +150,25 @@ class SimpleImputer(_BaseImputer):
150150
.. versionadded:: 0.20
151151
strategy="constant" for fixed value imputation.
152152
153-
fill_value : string or numerical value, default=None
153+
fill_value : str or numerical value, default=None
154154
When strategy == "constant", fill_value is used to replace all
155155
occurrences of missing_values.
156156
If left to the default, fill_value will be 0 when imputing numerical
157157
data and "missing_value" for strings or object data types.
158158
159-
verbose : integer, default=0
159+
verbose : int, default=0
160160
Controls the verbosity of the imputer.
161161
162-
copy : boolean, default=True
163-
If True, a copy of X will be created. If False, imputation will
162+
copy : bool, default=True
163+
If True, a copy of `X` will be created. If False, imputation will
164164
be done in-place whenever possible. Note that, in the following cases,
165165
a new copy will always be made, even if `copy=False`:
166166
167-
- If X is not an array of floating values;
168-
- If X is encoded as a CSR matrix;
169-
- If add_indicator=True.
167+
- If `X` is not an array of floating values;
168+
- If `X` is encoded as a CSR matrix;
169+
- If `add_indicator=True`.
170170
171-
add_indicator : boolean, default=False
171+
add_indicator : bool, default=False
172172
If True, a :class:`MissingIndicator` transform will stack onto output
173173
of the imputer's transform. This allows a predictive estimator
174174
to account for missingness despite imputation. If a feature has no
@@ -186,7 +186,7 @@ class SimpleImputer(_BaseImputer):
186186
187187
indicator_ : :class:`~sklearn.impute.MissingIndicator`
188188
Indicator used to add binary indicators for missing values.
189-
``None`` if add_indicator is False.
189+
`None` if `add_indicator=False`.
190190
191191
n_features_in_ : int
192192
Number of features seen during :term:`fit`.
@@ -203,6 +203,11 @@ class SimpleImputer(_BaseImputer):
203203
--------
204204
IterativeImputer : Multivariate imputation of missing values.
205205
206+
Notes
207+
-----
208+
Columns which only contained missing values at :meth:`fit` are discarded
209+
upon :meth:`transform` if strategy is not `"constant"`.
210+
206211
Examples
207212
--------
208213
>>> import numpy as np
@@ -215,12 +220,6 @@ class SimpleImputer(_BaseImputer):
215220
[[ 7. 2. 3. ]
216221
[ 4. 3.5 6. ]
217222
[10. 3.5 9. ]]
218-
219-
Notes
220-
-----
221-
Columns which only contained missing values at :meth:`fit` are discarded
222-
upon :meth:`transform` if strategy is not "constant".
223-
224223
"""
225224

226225
def __init__(
@@ -301,17 +300,21 @@ def _validate_input(self, X, in_fit):
301300
return X
302301

303302
def fit(self, X, y=None):
304-
"""Fit the imputer on X.
303+
"""Fit the imputer on `X`.
305304
306305
Parameters
307306
----------
308307
X : {array-like, sparse matrix}, shape (n_samples, n_features)
309-
Input data, where ``n_samples`` is the number of samples and
310-
``n_features`` is the number of features.
308+
Input data, where `n_samples` is the number of samples and
309+
`n_features` is the number of features.
310+
311+
y : Ignored
312+
Not used, present here for API consistency by convention.
311313
312314
Returns
313315
-------
314-
self : SimpleImputer
316+
self : object
317+
Fitted estimator.
315318
"""
316319
X = self._validate_input(X, in_fit=True)
317320

@@ -449,7 +452,7 @@ def _dense_fit(self, X, strategy, missing_values, fill_value):
449452
return np.full(X.shape[1], fill_value, dtype=X.dtype)
450453

451454
def transform(self, X):
452-
"""Impute all missing values in X.
455+
"""Impute all missing values in `X`.
453456
454457
Parameters
455458
----------
@@ -538,10 +541,10 @@ def inverse_transform(self, X):
538541
This operation can only be performed after :class:`SimpleImputer` is
539542
instantiated with `add_indicator=True`.
540543
541-
Note that ``inverse_transform`` can only invert the transform in
544+
Note that `inverse_transform` can only invert the transform in
542545
features that have binary indicators for missing values. If a feature
543-
has no missing values at ``fit`` time, the feature won't have a binary
544-
indicator, and the imputation done at ``transform`` time won't be
546+
has no missing values at `fit` time, the feature won't have a binary
547+
indicator, and the imputation done at `transform` time won't be
545548
inverted.
546549
547550
.. versionadded:: 0.24
@@ -556,7 +559,7 @@ def inverse_transform(self, X):
556559
Returns
557560
-------
558561
X_original : ndarray of shape (n_samples, n_features)
559-
The original X with missing values as it was prior
562+
The original `X` with missing values as it was prior
560563
to imputation.
561564
"""
562565
check_is_fitted(self)

0 commit comments

Comments
 (0)
0