[export] torch.tensor constructor specializes on float value #153411
Labels
export-triaged
This tag is used to tag issues that have been looked by PT2 Export team and determined the next step
module: dynamic shapes
oncall: export
oncall: pt2
Uh oh!
There was an error while loading. Please reload this page.
🐛 Describe the bug
exporting a
torch.tensor()
constructor call on a float scalar specializes on the value, leading to a data-dependent error:error:
strangely enough, all of these pass:
Versions
Collecting environment information...
/data/users/pianpwk/ptclone/pytorch/torch/cuda/init.py:799: UserWarning: Can't initialize NVML
warnings.warn("Can't initialize NVML")
PyTorch version: 2.8.0a0+git05326b7
Is debug build: False
CUDA used to build PyTorch: 12.0
ROCM used to build PyTorch: N/A
OS: CentOS Stream 9 (x86_64)
GCC version: (GCC) 11.5.0 20240719 (Red Hat 11.5.0-5)
Clang version: Could not collect
CMake version: version 4.0.2
Libc version: glibc-2.34
Python version: 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-6.4.3-0_fbk14_hardened_2601_gcd42476b84e9-x86_64-with-glibc2.34
Is CUDA available: True
CUDA runtime version: 12.0.140
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: Could not collect
Nvidia driver version: Could not collect
cuDNN version: Probably one of the following:
/usr/lib64/libcudnn.so.8.8.0
/usr/lib64/libcudnn_adv_infer.so.8.8.0
/usr/lib64/libcudnn_adv_train.so.8.8.0
/usr/lib64/libcudnn_cnn_infer.so.8.8.0
/usr/lib64/libcudnn_cnn_train.so.8.8.0
/usr/lib64/libcudnn_ops_infer.so.8.8.0
/usr/lib64/libcudnn_ops_train.so.8.8.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 92
On-line CPU(s) list: 0-91
Vendor ID: AuthenticAMD
Model name: AMD EPYC 9654 96-Core Processor
CPU family: 25
Model: 17
Thread(s) per core: 1
Core(s) per socket: 92
Socket(s): 1
Stepping: 1
BogoMIPS: 4792.79
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw perfctr_core invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 clzero xsaveerptr wbnoinvd arat npt lbrv nrip_save tsc_scale vmcb_clean pausefilter pfthreshold v_vmsave_vmload vgif avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm arch_capabilities
Virtualization: AMD-V
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 5.8 MiB (92 instances)
L1i cache: 5.8 MiB (92 instances)
L2 cache: 46 MiB (92 instances)
L3 cache: 1.4 GiB (92 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-91
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] optree==0.15.0
[pip3] pytorch-triton==3.3.0+git96316ce5
[pip3] torch==2.8.0a0+git05326b7
[conda] mkl-include 2025.1.0 pypi_0 pypi
[conda] mkl-static 2025.1.0 pypi_0 pypi
[conda] numpy 1.26.4 pypi_0 pypi
[conda] optree 0.15.0 pypi_0 pypi
[conda] pytorch-triton 3.3.0+git96316ce5 pypi_0 pypi
[conda] torch 2.8.0a0+git88a068f dev_0
cc @chauhang @penguinwu @ezyang @bobrenjc93 @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
The text was updated successfully, but these errors were encountered: