|
36 | 36 |
|
37 | 37 | # contributed by Sawyer B. Fuller <minster@uw.edu>
|
38 | 38 | def lqe(*args, **kwargs):
|
39 |
| - """lqe(A, G, C, QN, RN, [, NN]) |
| 39 | + r"""lqe(A, G, C, QN, RN, [, NN]) |
40 | 40 |
|
41 | 41 | Linear quadratic estimator design (Kalman filter) for continuous-time
|
42 | 42 | systems. Given the system
|
43 | 43 |
|
44 | 44 | .. math::
|
45 | 45 |
|
46 |
| - x &= Ax + Bu + Gw \\\\ |
| 46 | + dx/dt &= Ax + Bu + Gw \\ |
47 | 47 | y &= Cx + Du + v
|
48 | 48 |
|
49 | 49 | with unbiased process noise w and measurement noise v with covariances
|
50 | 50 |
|
51 |
| - .. math:: E{ww'} = QN, E{vv'} = RN, E{wv'} = NN |
| 51 | + .. math:: E\{w w^T\} = QN, E\{v v^T\} = RN, E\{w v^T\} = NN |
52 | 52 |
|
53 | 53 | The lqe() function computes the observer gain matrix L such that the
|
54 | 54 | stationary (non-time-varying) Kalman filter
|
55 | 55 |
|
56 |
| - .. math:: x_e = A x_e + B u + L(y - C x_e - D u) |
| 56 | + .. math:: dx_e/dt = A x_e + B u + L(y - C x_e - D u) |
57 | 57 |
|
58 | 58 | produces a state estimate x_e that minimizes the expected squared error
|
59 | 59 | using the sensor measurements y. The noise cross-correlation `NN` is
|
@@ -195,7 +195,7 @@ def dlqe(*args, **kwargs):
|
195 | 195 |
|
196 | 196 | with unbiased process noise w and measurement noise v with covariances
|
197 | 197 |
|
198 |
| - .. math:: E{ww'} = QN, E{vv'} = RN, E{wv'} = NN |
| 198 | + .. math:: E\{w w^T\} = QN, E\{v v^T\} = RN, E\{w v^T\} = NN |
199 | 199 |
|
200 | 200 | The dlqe() function computes the observer gain matrix L such that the
|
201 | 201 | stationary (non-time-varying) Kalman filter
|
|
0 commit comments