8000 remove unneeded :math: directives · python-control/python-control@3950f67 · GitHub
[go: up one dir, main page]

Skip to content

Commit 3950f67

Browse files
committed
remove unneeded :math: directives
1 parent d0aa48a commit 3950f67

File tree

1 file changed

+29
-29
lines changed

1 file changed

+29
-29
lines changed

control/statefbk.py

Lines changed: 29 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -296,14 +296,14 @@ def acker(A, B, poles):
296296

297297

298298
def lqr(*args, **kwargs):
299-
"""lqr(A, B, Q, R[, N])
299+
r"""lqr(A, B, Q, R[, N])
300300
301301
Linear quadratic regulator design.
302302
303303
The lqr() function computes the optimal state feedback controller
304304
u = -K x that minimizes the quadratic cost
305305
306-
.. math:: J = \\int_0^\\infty (x' Q x + u' R u + 2 x' N u) dt
306+
.. math:: J = \int_0^\infty (x' Q x + u' R u + 2 x' N u) dt
307307
308308
The function can be called with either 3, 4, or 5 arguments:
309309
@@ -442,14 +442,14 @@ def lqr(*args, **kwargs):
442442

443443

444444
def dlqr(*args, **kwargs):
445-
"""dlqr(A, B, Q, R[, N])
445+
r"""dlqr(A, B, Q, R[, N])
446446
447447
Discrete-time linear quadratic regulator design.
448448
449449
The dlqr() function computes the optimal state feedback controller
450450
u[n] = - K x[n] that minimizes the quadratic cost
451451
452-
.. math:: J = \\sum_0^\\infty (x[n]' Q x[n] + u[n]' R u[n] + 2 x[n]' N u[n])
452+
.. math:: J = \sum_0^\infty (x[n]' Q x[n] + u[n]' R u[n] + 2 x[n]' N u[n])
453453
454454
The function can be called with either 3, 4, or 5 arguments:
455455
@@ -584,12 +584,12 @@ def create_statefbk_iosystem(
584584
xd_labels=None, ud_labels=None, gainsched_indices=None,
585585
gainsched_method='linear', control_indices=None, state_indices=None,
586586
name=None, inputs=None, outputs=None, states=None, **kwargs):
587-
"""Create an I/O system using a (full) state feedback controller.
587+
r"""Create an I/O system using a (full) state feedback controller.
588588
589589
This function creates an input/output system that implements a
590590
state feedback controller of the form
591591
592-
.. math :: u = u_d - K_p (x - x_d) - K_i \int(C x - C x_d)
592+
.. math:: u = u_d - K_p (x - x_d) - K_i \int(C x - C x_d)
593593
594594
It can be called in the form::
595595
@@ -603,7 +603,7 @@ def create_statefbk_iosystem(
603603
gains and a corresponding list of values of a set of scheduling
604604
variables. In this case, the controller has the form
605605
606-
.. math :: u = u_d - K_p(\mu) (x - x_d) - K_i(\mu) \int(C x - C x_d)
606+
.. math:: u = u_d - K_p(\mu) (x - x_d) - K_i(\mu) \int(C x - C x_d)
607607
608608
where :math:`\mu` represents the scheduling variable.
609609
@@ -623,18 +623,18 @@ def create_statefbk_iosystem(
623623
624624
If a tuple is given, then it specifies a gain schedule. The tuple
625625
should be of the form `(gains, points)` where gains is a list of
626-
gains :math:`K_j` and points is a list of values :math:`\mu_j` at
627-
which the gains are computed. The `gainsched_indices` parameter
628-
should be used to specify the scheduling variables.
626+
gains `K_j` and points is a list of values `mu_j` at which the
627+
gains are computed. The `gainsched_indices` parameter should be
628+
used to specify the scheduling variables.
629629
630630
xd_labels, ud_labels : str or list of str, optional
631631
Set the name of the signals to use for the desired state and
632-
inputs. If a single string is specified, it should be a
633-
format string using the variable `i` as an index. Otherwise,
634-
a list of strings matching the size of :math:`x_d` and :math:`u_d`,
635-
respectively, should be used. Default is "xd[{i}]" for
636-
xd_labels and "ud[{i}]" for ud_labels. These settings can
637-
also be overridden using the `inputs` keyword.
632+
inputs. If a single string is specified, it should be a format
633+
string using the variable `i` as an index. Otherwise, a list of
634+
strings matching the size of `x_d` and `u_d`, respectively, should
635+
be used. Default is "xd[{i}]" for xd_labels and "ud[{i}]" for
636+
ud_labels. These settings can also be overridden using the
637+
`inputs` keyword.
638638
639639
integral_action : ndarray, optional
640640
If this keyword is specified, the controller can include integral
@@ -650,13 +650,13 @@ def create_statefbk_iosystem(
650650
gainsched_indices : int, slice, or list of int or str, optional
651651
If a gain scheduled controller is specified, specify the indices of
652652
the controller input to use for scheduling the gain. The input to
653-
the controller is the desired state :math:`x_d`, the desired input :math:`u_d`, and
654-
the system state :math:`x` (or state estimate :math:`\hat{x}`, if an estimator is
655-
given). If value is an integer `q`, the first `q` values of the
656-
:math:`[x_d, u_d, x]` vector are used. Otherwise, the value should be a
657-
slice or a list of indices. The list of indices can be specified
658-
as either integer offsets or as signal names. The default is to
659-
use the desired state :math:`x_d`.
653+
the controller is the desired state `x_d`, the desired input `u_d`,
654+
and the system state `x` (or state estimate `xhat`, if an
655+
estimator is given). If value is an integer `q`, the first `q`
656+
values of the `[x_d, u_d, x]` vector are used. Otherwise, the
657+
value should be a slice or a list of indices. The list of indices
658+
can be specified as either integer offsets or as signal names. The
659+
default is to use the desired state `x_d`.
660660
661661
gainsched_method : str, optional
662662
The method to use for gain scheduling. Possible values are 'linear'
@@ -677,10 +677,10 @@ def create_statefbk_iosystem(
677677
-------
678678
ctrl : NonlinearIOSystem
679679
Input/output system representing the controller. This system
680-
takes as inputs the desired state :math:`x_d`, the desired input
681-
:math:`u_d`, and either the system state :math:`x` or the estimated state
682-
:math:`\hat{x}`. It outputs the controller action :math:`u` according to the
683-
formula :math:`u = u_d - K(x - x_d)`. If the keyword
680+
takes as inputs the desired state `x_d`, the desired input
681+
`u_d`, and either the system state `x` or the estimated state
682+
`xhat`. It outputs the controller action `u` according to the
683+
formula `u = u_d - K(x - x_d)`. If the keyword
684684
`integral_action` is specified, then an additional set of
685685
integrators is included in the control system (with the gain
686686
matrix `K` having the integral gains appended after the state
@@ -690,8 +690,8 @@ def create_statefbk_iosystem(
690690
691691
clsys : NonlinearIOSystem
692692
Input/output system representing the closed loop system. This
693-
system takes as inputs the desired trajectory :math:`(x_d, u_d)` and
694-
outputs the system state :math:`x` and the applied input :math:`u`
693+
system takes as inputs the desired trajectory `(x_d, u_d)` and
694+
outputs the system state `x` and the applied input `u`
695695
(vertically stacked).
696696
697697
Other Parameters

0 commit comments

Comments
 (0)
0