8000 Make sure Pydantic dataclasses with slots and `validate_assignment` can be unpickled by Viicos · Pull Request #11769 · pydantic/pydantic · GitHub
[go: up one dir, main page]

Skip to content

Make sure Pydantic dataclasses with slots and validate_assignment can be unpickled #11769

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Apr 29, 2025
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
Make sure Pydantic dataclasses with slots and validate_assignment a…
…re unpickable
  • Loading branch information
Viicos committed Apr 17, 2025
commit d174f8b8f7c1775e3f3ca42a08ec2c6f8fd1f835
14 changes: 2 additions & 12 deletions pydantic/_internal/_dataclasses.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
import dataclasses
import typing
import warnings
from functools import partial, wraps
from functools import partial
from typing import Any, ClassVar

from pydantic_core import (
Expand Down Expand Up @@ -178,22 +178,12 @@ def __init__(__dataclass_self__: PydanticDataclass, *args: Any, **kwargs: Any) -
# We are about to set all the remaining required properties expected for this cast;
# __pydantic_decorators__ and __pydantic_fields__ should already be set
cls = typing.cast('type[PydanticDataclass]', cls)
# debug(schema)

cls.__pydantic_core_schema__ = schema
cls.__pydantic_validator__ = validator = create_schema_validator(
cls.__pydantic_validator__ = create_schema_validator(
schema, cls, cls.__module__, cls.__qualname__, 'dataclass', core_config, config_wrapper.plugin_settings
)
cls.__pydantic_serializer__ = SchemaSerializer(schema, core_config)

if config_wrapper.validate_assignment:

@wraps(cls.__setattr__)
def validated_setattr(instance: Any, field: str, value: str, /) -> None:
validator.validate_assignment(instance, field, value)

cls.__setattr__ = validated_setattr.__get__(None, cls) # type: ignore

cls.__pydantic_complete__ = True
return True

Expand Down
30 changes: 30 additions & 0 deletions pydantic/dataclasses.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from __future__ import annotations as _annotations

import dataclasses
import functools
import sys
import types
from typing import TYPE_CHECKING, Any, Callable, Generic, Literal, NoReturn, TypeVar, overload
Expand Down Expand Up @@ -264,6 +265,35 @@ def create_dataclass(cls: type[Any]) -> type[PydanticDataclass]:
**kwargs,
)

if config_wrapper.validate_assignment:

@functools.wraps(cls.__setattr__)
def validated_setattr(instance: Any, field: str, value: str, /) -> None:
type(instance).__pydantic_validator__.validate_assignment(instance, field, value)

cls.__setattr__ = validated_setattr.__get__(None, cls) # type: ignore

if slots and not hasattr(cls, '__setstate__'):
# If slots is set, `pickle` (relied on by `copy.copy()`) will use
# `__setattr__()` to reconstruct the dataclass. However, the custom
# `__setattr__()` set above relies on `validate_assignment()`, which
# in turn excepts all the field values to be already present on the
# instance, resulting in attribute errors.
# As such, we make use of `object.__setattr__()` instead.
# Note that we do so only if `__setstate__()` isn't already set (this is the
# case if on top of `slots`, `frozen` is used).

# Taken from `dataclasses._dataclass_get/setstate()`:
def _dataclass_getstate(self: Any) -> list[Any]:
return [getattr(self, f.name) for f in dataclasses.fields(self)]

def _dataclass_setstate(self: Any, state: list[Any]) -> None:
for field, value in zip(dataclasses.fields(self), state):
object.__setattr__(self, field.name, value)

cls.__getstate__ = _dataclass_getstate # pyright: ignore[reportAttributeAccessIssue]
cls.__setstate__ = _dataclass_setstate # pyright: ignore[reportAttributeAccessIssue]

# This is an undocumented attribute to distinguish stdlib/Pydantic dataclasses.
# It should be set as early as possible:
cls.__is_pydantic_dataclass__ = True
Expand Down
17 changes: 17 additions & 0 deletions tests/test_dataclasses.py
Original file line number Diff line number Diff line change
Expand Up @@ -2430,6 +2430,23 @@ class Model:
assert dc.b == 'bar'


# Must be defined at the module level to be pickable:
@pydantic.dataclasses.dataclass(slots=True, config={'validate_assignment': True})
class DataclassSlotsValidateAssignment:
a: int


@pytest.mark.skipif(sys.version_info < (3, 10), reason='slots are only supported for dataclasses in Python >= 3.10')
def test_dataclass_slots_validate_assignment():
"""https://github.com/pydantic/pydantic/issues/11768"""

m = DataclassSlotsValidateAssignment(1)
m_pickle = pickle.loads(pickle.dumps(m))
assert m_pickle.a == 1
with pytest.raises(ValidationError):
m.a = 'not_an_int'


@pytest.mark.parametrize(
'dataclass_decorator',
[
Expand Down
Loading
0