[3DV24] Cas6D: Learning to Estimate 6DoF Pose from Limited Data: A Few-Shot,
Generalizable Approach using RGB Images
1ByteDance
2The University of Texas at Austin
3MIT
4The Chinese University of Hong Kong
*denotes equal contribution
- Download processed co3d data (co3d.tar.gz), google scanned objects data (google_scanned_objects.tar.gz) and ShapeNet renderings (shapenet.tar.gz) at here.
- Download COCO 2017 training set.
- Organize files like
Gen6D
|-- data
|-- GenMOP
|-- chair
...
|-- LINEMOD
|-- cat
...
|-- shapenet
|-- shapenet_cache
|-- shapenet_render
|-- shapenet_render_v1.pkl
|-- co3d_256_512
|-- apple
...
|-- google_scanned_objects
|-- 06K3jXvzqIM
...
|-- coco
|-- train2017
4. Train the detector
```shell
python3 train_model.py --cfg configs/detector/detector_train.yaml
- Train the selector
python3 train_model.py --cfg configs/selector/selector_train.yaml
- Prepare the validation data for training refiner
python3 prepare.py --action gen_val_set \
--estimator_cfg configs/gen6d_train.yaml \
--que_database linemod/cat \
--que_split linemod_val \
--ref_database linemod/cat \
--ref_split linemod_val
python3 prepare.py --action gen_val_set \
--estimator_cfg configs/gen6d_train.yaml \
--que_database genmop/tformer-test \
--que_split all \
--ref_database genmop/tformer-ref \
--ref_split all
This command will generate the information in the data/val
, which will be used in producing validation data for the refiner.
7. Train the refiner
python3 train_model.py --cfg configs/refiner/refiner_train.yaml
# Evaluate on the object TFormer from the GenMOP/LINEMOD dataset
python3 eval.py --cfg configs/cas6d_train.yaml
We would like to thank Gen6D authors for open-sourcing their implementations.
If you find this repo is helpful, please consider citing:
@inproceedings{pan2024learning,
title={Learning to estimate 6dof pose from limited data: A few-shot, generalizable approach using rgb images},
author={Pan, Panwang and Fan, Zhiwen and Feng, Brandon Y and Wang, Peihao and Li, Chenxin and Wang, Zhangyang},
booktitle={2024 International Conference on 3D Vision (3DV)},
pages={1059--1071},
year={2024},
organization={IEEE}
}