10000 REF: use BlockManager.apply for Rolling.count by jbrockmendel · Pull Request #35883 · pandas-dev/pandas · GitHub
[go: up one dir, main page]

Skip to content

REF: use BlockManager.apply for Rolling.count #35883

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 14 commits into from
Aug 31, 2020
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
TST: add test for agg on ordered categorical cols (#35630)
  • Loading branch information
mathurk1 authored and jbrockmendel committed Aug 22, 2020
commit 42649fbb855a895ee5818d7dc80bdbd0ce0e9f5a
79 changes: 79 additions & 0 deletions pandas/tests/groupby/aggregate/test_aggregate.py
Original file line number Diff line number Diff line change
Expand Up @@ -1063,6 +1063,85 @@ def test_groupby_get_by_index():
pd.testing.assert_frame_equal(res, expected)


@pytest.mark.parametrize(
"grp_col_dict, exp_data",
[
({"nr": "min", "cat_ord": "min"}, {"nr": [1, 5], "cat_ord": ["a", "c"]}),
({"cat_ord": "min"}, {"cat_ord": ["a", "c"]}),
({"nr": "min"}, {"nr": [1, 5]}),
],
)
def test_groupby_single_agg_cat_cols(grp_col_dict, exp_data):
# test single aggregations on ordered categorical cols GHGH27800

# create the result dataframe
input_df = pd.DataFrame(
{
"nr": [1, 2, 3, 4, 5, 6, 7, 8],
"cat_ord": list("aabbccdd"),
"cat": list("aaaabbbb"),
}
)

input_df = input_df.astype({"cat": "category", "cat_ord": "category"})
input_df["cat_ord"] = input_df["cat_ord"].cat.as_ordered()
result_df = input_df.groupby("cat").agg(grp_col_dict)

# create expected dataframe
cat_index = pd.CategoricalIndex(
["a", "b"], categories=["a", "b"], ordered=False, name="cat", dtype="category"
)

expected_df = pd.DataFrame(data=exp_data, index=cat_index)

tm.assert_frame_equal(result_df, expected_df)


@pytest.mark.parametrize(
"grp_col_dict, exp_data",
[
({"nr": ["min", "max"], "cat_ord": "min"}, [(1, 4, "a"), (5, 8, "c")]),
({"nr": "min", "cat_ord": ["min", "max"]}, [(1, "a", "b"), (5, "c", "d")]),
({"cat_ord": ["min", "max"]}, [("a", "b"), ("c", "d")]),
],
)
def test_groupby_combined_aggs_cat_cols(grp_col_dict, exp_data):
# test combined aggregations on ordered categorical cols GH27800

# create the result dataframe
input_df = pd.DataFrame(
{
"nr": [1, 2, 3, 4, 5, 6, 7, 8],
"cat_ord": list("aabbccdd"),
"cat": list("aaaabbbb"),
}
)

input_df = input_df.astype({"cat": "category", "cat_ord": "category"})
input_df["cat_ord"] = input_df["cat_ord"].cat.as_ordered()
result_df = input_df.groupby("cat").agg(grp_col_dict)

# create expected dataframe
cat_index = pd.CategoricalIndex(
["a", "b"], categories=["a", "b"], ordered=False, name="cat", dtype="category"
)

# unpack the grp_col_dict to create the multi-index tuple
# this tuple will be used to create the expected dataframe index
multi_index_list = []
for k, v in grp_col_dict.items():
if isinstance(v, list):
for value in v:
multi_index_list.append([k, value])
else:
multi_index_list.append([k, v])
multi_index = pd.MultiIndex.from_tuples(tuple(multi_index_list))

expected_df = pd.DataFrame(data=exp_data, columns=multi_index, index=cat_index)

tm.assert_frame_equal(result_df, expected_df)


def test_nonagg_agg():
# GH 35490 - Single/Multiple agg of non-agg function give same results
# TODO: agg should raise for functions that don't aggregate
Expand Down
0