8000 DEPR: DataFrame.get_dtype_counts by mroeschke · Pull Request #27145 · pandas-dev/pandas · GitHub
[go: up one dir, main page]

Skip to content

DEPR: DataFrame.get_dtype_counts #27145

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 27 commits into from
Jul 3, 2019
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Convert more tests
  • Loading branch information
Matt Roeschke committed Jul 1, 2019
commit 592659f0ce190979e3d16f6814c3b66ffe50190d
8 changes: 3 additions & 5 deletions pandas/tests/frame/test_missing.py
Original file line number Diff line number Diff line change
Expand Up @@ -407,15 +407,13 @@ def test_fillna_downcast(self):
def test_fillna_dtype_conversion(self):
# make sure that fillna on an empty frame works
df = DataFrame(index=["A", "B", "C"], columns=[1, 2, 3, 4, 5])
result = Series(df._data.get_dtype_counts()).sort_values()
expected = Series({'object': 5})
result = df.dtypes
expected = Series([np.dtype('object')] * 5, index=[1, 2, 3, 4, 5])
assert_series_equal(result, expected)

result = df.fillna(1)
expected = DataFrame(1, index=["A", "B", "C"], columns=[1, 2, 3, 4, 5])
result = Series(result._data.get_dtype_counts()).sort_values()
expected = Series({'int64': 5})
assert_series_equal(result, expected)
assert_frame_equal(result, expected)

# empty block
df = DataFrame(index=range(3), columns=['A', 'B'], dtype='float64')
Expand Down
5 changes: 2 additions & 3 deletions pandas/tests/io/pytables/test_pytables.py
10000
Original file line number Diff line number Diff line change
Expand Up @@ -1985,9 +1985,8 @@ def test_table_values_dtypes_roundtrip(self):
df1['time2'] = Timestamp('20130102')

store.append('df_mixed_dtypes1', df1)
result = Series(
store.select('df_mixed_dtypes1')._data.get_dtype_counts()
)
result = store.select('df_mixed_dtypes1').dtypes.value_counts()
result.index = [str(i) for i in result.index]
expected = Series({'float32': 2, 'float64': 1, 'int32': 1,
'bool': 1, 'int16': 1, 'int8': 1,
'int64': 1, 'object': 1, 'datetime64[ns]': 2})
Expand Down
10 changes: 6 additions & 4 deletions pandas/tests/reshape/test_pivot.py
Original file line number Diff line number Diff line change
Expand Up @@ -245,8 +245,9 @@ def test_pivot_dtypes(self):

z = pivot_table(f, values='v', index=['a'], columns=[
'i'], fill_value=0, aggfunc=np.sum)
result = Series(z._data.get_dtype_counts())
expected = Series(dict(int64=2))
result = z.dtypes
expected = Series([np.dtype('int64')] * 2,
index=Index(list('ab'), name='i'))
tm.assert_series_equal(result, expected)

# cannot convert dtypes
Expand All @@ -256,8 +257,9 @@ def test_pivot_dtypes(self):

z = pivot_table(f, values='v', index=['a'], columns=[
'i'], fill_value=0, aggfunc=np.mean)
result = Series(z._data.get_dtype_counts())
expected = Series(dict(float64=2))
result = z.dtypes
expected = Series([np.dtype('float64')] * 2,
index=Index(list('ab'), name='i'))
tm.assert_series_equal(result, expected)

@pytest.mark.parametrize('columns,values',
Expand Down
15 changes: 7 additions & 8 deletions pandas/tests/reshape/test_reshape.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,21 +101,20 @@ def test_basic_types(self, sparse, dtype):
dtype_name = self.effective_dtype(dtype).name

expected = Series({dtype_name: 8})
tm.assert_series_equal(Series(result._data.get_dtype_counts()),
expected)
result = result.dtypes.value_counts()
result.index = [str(i) for i in result.index]
tm.assert_series_equal(result, expected)

result = get_dummies(s_df, columns=['a'], sparse=sparse, dtype=dtype)

expected_counts = {'int64': 1, 'object': 1}
expected_counts[dtype_name] = 3 + expected_counts.get(dtype_name, 0)

expected = Series(expected_counts).sort_index()
tm.assert_series_equal(
Series(
result._data.get_dtype_counts()
).sort_index(),
expected
)
result = result.dtypes.value_counts()
result.index = [str(i) for i in result.index]
result = result.sort_index()
tm.assert_series_equal(result, expected)

def test_just_na(self, sparse):
just_na_list = [np.nan]
Expand Down
0