8000 Adding fixtures to series tests as per #22550 by blueenvelope31 · Pull Request #23247 · pandas-dev/pandas · GitHub
[go: up one dir, main page]

Skip to content

Adding fixtures to series tests as per #22550 #23247

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 6 commits into from
Closed
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
8000
Diff view
Diff view
Next Next commit
Added fixtures to test_quantile
  • Loading branch information
blueenvelope31 authored Oct 20, 2018
commit 7e2f9d1df5e0c98c053a2e8f95fb32592a4eec49
48 changes: 23 additions & 25 deletions pandas/tests/series/test_quantile.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,25 +11,23 @@
from pandas.core.dtypes.common import is_integer
import pandas.util.testing as tm

from .common import TestData

class TestSeriesQuantile():

class TestSeriesQuantile(TestData):
def test_quantile(self, datetime_series):

def test_quantile(self):
q = datetime_series.quantile(0.1)
assert q == np.percentile(datetime_series.dropna(), 10)

q = self.ts.quantile(0.1)
assert q == np.percentile(self.ts.dropna(), 10)

q = self.ts.quantile(0.9)
assert q == np.percentile(self.ts.dropna(), 90)
q = datetime_series.quantile(0.9)
assert q == np.percentile(datetime_series.dropna(), 90)

# object dtype
q = Series(self.ts, dtype=object).quantile(0.9)
assert q == np.percentile(self.ts.dropna(), 90)
q = Series(datetime_series, dtype=object).quantile(0.9)
assert q == np.percentile(datetime_series.dropna(), 90)

# datetime64[ns] dtype
dts = self.ts.index.to_series()
dts = datetime_series.index.to_series()
q = dts.quantile(.2)
assert q == Timestamp('2000-01-10 19:12:00')

Expand All @@ -45,38 +43,38 @@ def test_quantile(self):
msg = 'percentiles should all be in the interval \\[0, 1\\]'
for invalid in [-1, 2, [0.5, -1], [0.5, 2]]:
with tm.assert_raises_regex(ValueError, msg):
self.ts.quantile(invalid)
datetime_series.quantile(invalid)

def test_quantile_multi(self):
def test_quantile_multi(self, datetime_series):

qs = [.1, .9]
result = self.ts.quantile(qs)
expected = pd.Series([np.percentile(self.ts.dropna(), 10),
np.percentile(self.ts.dropna(), 90)],
index=qs, name=self.ts.name)
result = datetime_series.quantile(qs)
expected = pd.Series([np.percentile(datetime_series.dropna(), 10),
np.percentile(datetime_series.dropna(), 90)],
index=qs, name=datetime_series.name)
tm.assert_series_equal(result, expected)

dts = self.ts.index.to_series()
dts = datetime_series.index.to_series()
dts.name = 'xxx'
result = dts.quantile((.2, .2))
expected = Series([Timestamp('2000-01-10 19:12:00'),
Timestamp('2000-01-10 19:12:00')],
index=[.2, .2], name='xxx')
tm.assert_series_equal(result, expected)

result = self.ts.quantile([])
expected = pd.Series([], name=self.ts.name, index=Index(
result = datetime_series.quantile([])
expected = pd.Series([], name=datetime_series.name, index=Index(
[], dtype=float))
tm.assert_series_equal(result, expected)

def test_quantile_interpolation(self):
def test_quantile_interpolation(self, datetime_series):
# see gh-10174

# interpolation = linear (default case)
q = self.ts.quantile(0.1, interpolation='linear')
assert q == np.percentile(self.ts.dropna(), 10)
q1 = self.ts.quantile(0.1)
assert q1 == np.percentile(self.ts.dropna(), 10)
q = datetime_series.quantile(0.1, interpolation='linear')
assert q == np.percentile(datetime_series.dropna(), 10)
q1 = datetime_series.quantile(0.1)
assert q1 == np.percentile(datetime_series.dropna(), 10)

# test with and without interpolation keyword
assert q == q1
Expand Down
0