8000 TST/CLN: Fixturize frame/test_analytics by h-vetinari · Pull Request #22733 · pandas-dev/pandas · GitHub
[go: up one dir, main page]

Skip to content

TST/CLN: Fixturize frame/test_analytics #22733

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 15 commits into from
Oct 6, 2018
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Pure unindent of _check_stat_op and _check_bool_op
  • Loading branch information
h-vetinari committed Sep 25, 2018
commit e1a8c5a47bdcdd0a414ba24ce0d8bae9ea92dc5b
268 changes: 134 additions & 134 deletions pandas/tests/frame/test_analytics.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,145 +25,145 @@
import pandas.util._test_decorators as td


def _check_stat_op(self, name, alternative, main_frame, float_frame,
float_string_frame, has_skipna=True,
has_numeric_only=False, check_dtype=True,
check_dates=False, check_less_precise=False,
skipna_alternative=None):

f = getattr(main_frame, name)

if check_dates:
df = DataFrame({'b': date_range('1/1/2001', periods=2)})
_f = getattr(df, name)
result = _f()
assert isinstance(result, Series)

df['a'] = lrange(len(df))
result = getattr(df, name)()
assert isinstance(result, Series)
assert len(result)

if has_skipna:
def wrapper(x):
return alternative(x.values)

skipna_wrapper = tm._make_skipna_wrapper(alternative,
skipna_alternative)
result0 = f(axis=0, skipna=False)
result1 = f(axis=1, skipna=False)
tm.assert_series_equal(result0, main_frame.apply(wrapper),
check_dtype=check_dtype,
check_less_precise=check_less_precise)
# HACK: win32
tm.assert_series_equal(result1, main_frame.apply(wrapper, axis=1),
10000 check_dtype=False,
check_less_precise=check_less_precise)
else:
skipna_wrapper = alternative
def _check_stat_op(self, name, alternative, main_frame, float_frame,
float_string_frame, has_skipna=True,
has_numeric_only=False, check_dtype=True,
check_dates=False, check_less_precise=False,
skipna_alternative=None):

f = getattr(main_frame, name)

if check_dates:
df = DataFrame({'b': date_range('1/1/2001', periods=2)})
_f = getattr(df, name)
result = _f()
assert isinstance(result, Series)

df['a'] = lrange(len(df))
result = getattr(df, name)()
assert isinstance(result, Series)
assert len(result)

if has_skipna:
def wrapper(x):
return alternative(x.values)

result0 = f(axis=0)
result1 = f(axis=1)
tm.assert_series_equal(result0, main_frame.apply(skipna_wrapper),
skipna_wrapper = tm._make_skipna_wrapper(alternative,
skipna_alternative)
result0 = f(axis=0, skipna=False)
result1 = f(axis=1, skipna=False)
tm.assert_series_equal(result0, main_frame.apply(wrapper),
check_dtype=check_dtype,
check_less_precise=check_less_precise)
# HACK: win32
tm.assert_series_equal(result1, main_frame.apply(wrapper, axis=1),
check_dtype=False,
check_less_precise=check_less_precise)
else:
skipna_wrapper = alternative

result0 = f(axis=0)
result1 = f(axis=1)
tm.assert_series_equal(result0, main_frame.apply(skipna_wrapper),
check_dtype=check_dtype,
check_less_precise=check_less_precise)
if name in ['sum', 'prod']:
expected = main_frame.apply(skipna_wrapper, axis=1)
tm.assert_series_equal(result1, expected, check_dtype=False,
check_less_precise=check_less_precise)

# check dtypes
if check_dtype:
lcd_dtype = main_frame.values.dtype
assert lcd_dtype == result0.dtype
assert lcd_dtype == result1.dtype

# bad axis
tm.assert_raises_regex(ValueError, 'No axis named 2', f, axis=2)
# make sure works on mixed-type frame
getattr(float_string_frame, name)(axis=0)
getattr(float_string_frame, name)(axis=1)

if has_numeric_only:
getattr(float_string_frame, name)(axis=0, numeric_only=True)
getattr(float_string_frame, name)(axis=1, numeric_only=True)
getattr(float_frame, name)(axis=0, numeric_only=False)
getattr(float_frame, name)(axis=1, numeric_only=False)

# all NA case
if has_skipna:
all_na = float_frame * np.NaN
r0 = getattr(all_na, name)(axis=0)
r1 = getattr(all_na, name)(axis=1)
if name in ['sum', 'prod']:
expected = main_frame.apply(skipna_wrapper, axis=1)
tm.assert_series_equal(result1, expected, check_dtype=False,
check_less_precise=check_less_precise)

# check dtypes
if check_dtype:
lcd_dtype = main_frame.values.dtype
assert lcd_dtype == result0.dtype
assert lcd_dtype == result1.dtype

# bad axis
tm.assert_raises_regex(ValueError, 'No axis named 2', f, axis=2)
# make sure works on mixed-type frame
getattr(float_string_frame, name)(axis=0)
getattr(float_string_frame, name)(axis=1)

if has_numeric_only:
getattr(float_string_frame, name)(axis=0, numeric_only=True)
getattr(float_string_frame, name)(axis=1, numeric_only=True)
getattr(float_frame, name)(axis=0, numeric_only=False)
getattr(float_frame, name)(axis=1, numeric_only=False)

# all NA case
if has_skipna:
all_na = float_frame * np.NaN
r0 = getattr(all_na, name)(axis=0)
r1 = getattr(all_na, name)(axis=1)
if name in ['sum', 'prod']:
unit = int(name == 'prod')
expected = pd.Series(unit, index=r0.index, dtype=r0.dtype)
tm.assert_series_equal(r0, expected)
expected = pd.Series(unit, index=r1.index, dtype=r1.dtype)
tm.assert_series_equal(r1, expected)


def _check_bool_op(self, name, alternative, frame, float_string_frame,
has_skipna=True, has_bool_only=False):

f = getattr(frame, name)

if has_skipna:
def skipna_wrapper(x):
nona = x.dropna().values
return alternative(nona)

def wrapper(x):
return alternative(x.values)

result0 = f(axis=0, skipna=False)
result1 = f(axis=1, skipna=False)
tm.assert_series_equal(result0, frame.apply(wrapper))
tm.assert_series_equal(result1, frame.apply(wrapper, axis=1),
check_dtype=False) # HACK: win32
unit = int(name == 'prod')
expected = pd.Series(unit, index=r0.index, dtype=r0.dtype)
tm.assert_series_equal(r0, expected)
expected = pd.Series(unit, index=r1.index, dtype=r1.dtype)
tm.assert_series_equal(r1, expected)


def _check_bool_op(self, name, alternative, frame, float_string_frame,
has_skipna=True, has_bool_only=False):

f = getattr(frame, name)

if has_skipna:
def skipna_wrapper(x):
nona = x.dropna().values
return alternative(nona)

def wrapper(x):
return alternative(x.values)

result0 = f(axis=0, skipna=False)
result1 = f(axis=1, skipna=False)
tm.assert_series_equal(result0, frame.apply(wrapper))
tm.assert_series_equal(result1, frame.apply(wrapper, axis=1),
check_dtype=False) # HACK: win32
else:
skipna_wrapper = alternative
wrapper = alternative

result0 = f(axis=0)
result1 = f(axis=1)
tm.assert_series_equal(result0, frame.apply(skipna_wrapper))
tm.assert_series_equal(result1, frame.apply(skipna_wrapper, axis=1),
check_dtype=False)

# bad axis
pytest.raises(ValueError, f, axis=2)

# make sure works on mixed-type frame
mixed = float_string_frame
mixed['_bool_'] = np.random.randn(len(mixed)) > 0
getattr(mixed, name)(axis=0)
getattr(mixed, name)(axis=1)

class NonzeroFail(object):

def __nonzero__(self):
raise ValueError

mixed['_nonzero_fail_'] = NonzeroFail()

if has_bool_only:
getattr(mixed, name)(axis=0, bool_only=True)
getattr(mixed, name)(axis=1, bool_only=True)
getattr(frame, name)(axis=0, bool_only=False)
getattr(frame, name)(axis=1, bool_only=False)

# all NA case
if has_skipna:
all_na = frame * np.NaN
r0 = getattr(all_na, name)(axis=0)
r1 = getattr(all_na, name)(axis=1)
if name == 'any':
assert not r0.any()
assert not r1.any()
else:
skipna_wrapper = alternative
wrapper = alternative

result0 = f(axis=0)
result1 = f(axis=1)
tm.assert_series_equal(result0, frame.apply(skipna_wrapper))
tm.assert_series_equal(result1, frame.apply(skipna_wrapper, axis=1),
check_dtype=False)

# bad axis
pytest.raises(ValueError, f, axis=2)

# make sure works on mixed-type frame
mixed = float_string_frame
mixed['_bool_'] = np.random.randn(len(mixed)) > 0
getattr(mixed, name)(axis=0)
getattr(mixed, name)(axis=1)

class NonzeroFail(object):

def __nonzero__(self):
raise ValueError

mixed['_nonzero_fail_'] = NonzeroFail()

if has_bool_only:
getattr(mixed, name)(axis=0, bool_only=True)
getattr(mixed, name)(axis=1, bool_only=True)
getattr(frame, name)(axis=0, bool_only=False)
getattr(frame, name)(axis=1, bool_only=False)

# all NA case
if has_skipna:
all_na = frame * np.NaN
r0 = getattr(all_na, name)(axis=0)
r1 = getattr(all_na, name)(axis=1)
if name == 'any':
assert not r0.any()
assert not r1.any()
else:
assert r0.all()
assert r1.all()
assert r0.all()
assert r1.all()


class TestDataFrameAnalytics():
Expand Down
0