8000 Portuguese translations by steppi · Pull Request #655 · numpy/numpy.org · GitHub
[go: up one dir, main page]

Skip to content

Portuguese translations #655

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 49 commits into from
Jul 28, 2023
Merged
Changes from 1 commit
Commits
Show all changes
49 commits
Select commit Hold shift + click to select a range
d5a92bc
New translations config.yaml (Portuguese, Brazilian)
rgommers May 3, 2023
9177d6d
New translations tabcontents.yaml (Portuguese, Brazilian)
rgommers May 3, 2023
8d22de7
New translations about.md (Portuguese, Brazilian)
rgommers May 3, 2023
9dce645
New translations citing-numpy.md (Portuguese, Brazilian)
rgommers May 3, 2023
312d054
New translations code-of-conduct.md (Portuguese, Brazilian)
rgommers May 3, 2023
e76bdd9
New translations community.md (Portuguese, Brazilian)
rgommers May 3, 2023
22211d7
New translations contribute.md (Portuguese, Brazilian)
rgommers May 3, 2023
eaae3ad
New translations install.md (Portuguese, Brazilian)
rgommers May 3, 2023
23a1dfc
New translations learn.md (Portuguese, Brazilian)
rgommers May 3, 2023
bd2b459
New translations news.md (Portuguese, Brazilian)
rgommers May 3, 2023
b630477
New translations privacy.md (Portuguese, Brazilian)
rgommers May 3, 2023
43ee5ec
New translations teams.md (Portuguese, Brazilian)
rgommers May 3, 2023
cdbd525
New translations user-survey-2020.md (Portuguese, Brazilian)
rgommers May 3, 2023
25f804a
New translations user-surveys.md (Portuguese, Brazilian)
rgommers May 3, 2023
a477aea
New translations cricket-analytics.md (Portuguese, Brazilian)
rgommers May 3, 2023
8ceaf48
New translations deeplabcut-dnn.md (Portuguese, Brazilian)
rgommers May 3, 2023
60f6606
New translations news.md (Portuguese, Brazilian)
rgommers May 16, 2023
f5dbd0d
New translations user-survey-2020.md (Portuguese, Brazilian)
rgommers Jun 13, 2023
3231036
New translations config.yaml (Portuguese, Brazilian)
rgommers Jun 13, 2023
f534510
New translations tabcontents.yaml (Portuguese, Brazilian)
rgommers Jun 13, 2023
ed996bf
New translations about.md (Portuguese, Brazilian)
rgommers Jun 13, 2023
5315d60
New translations code-of-conduct.md (Portuguese, Brazilian)
rgommers Jun 13, 2023
ad3799f
New translations community.md (Portuguese, Brazilian)
rgommers Jun 13, 2023
c0bd0cc
New translations contribute.md (Portuguese, Brazilian)
rgommers Jun 13, 2023
1457913
New translations install.md (Portuguese, Brazilian)
rgommers Jun 13, 2023
6c305a1
New translations learn.md (Portuguese, Brazilian)
rgommers Jun 13, 2023
75f613b
New translations news.md (Portuguese, Brazilian)
rgommers Jun 13, 2023
cd63a1d
New translations teams.md (Portuguese, Brazilian)
rgommers Jun 13, 2023
60d372f
New translations user-surveys.md (Portuguese, Brazilian)
rgommers Jun 13, 2023
ed9631d
New translations cricket-analytics.md (Portuguese, Brazilian)
rgommers Jun 13, 2023
26c5e57
New translations deeplabcut-dnn.md (Portuguese, Brazilian)
rgommers Jun 13, 2023
057fbd4
New translations about.md (Portuguese, Brazilian)
rgommers Jun 14, 2023
5eceaa0
New translations code-of-conduct.md (Portuguese, Brazilian)
rgommers Jun 14, 2023
4958a28
New translations community.md (Portuguese, Brazilian)
rgommers Jun 14, 2023
1523bc7
New translations learn.md (Portuguese, Brazilian)
rgommers Jun 15, 2023
c09f3d4
New translations news.md (Portuguese, Brazilian)
rgommers Jun 18, 2023
dc6b3cd
New translations news.md (Portuguese, Brazilian)
rgommers Jun 18, 2023
4108d2d
New translations news.md (Portuguese, Brazilian)
rgommers Jun 18, 2023
3105f35
New translations config.yaml (Portuguese, Brazilian)
rgommers Jun 19, 2023
3a247c4
New translations news.md (Portuguese, Brazilian)
rgommers Jun 19, 2023
0caf87e
New translations news.md (Portuguese, Brazilian)
rgommers Jun 19, 2023
7a7e4ac
New translations install.md (Portuguese, Brazilian)
rgommers Jun 20, 2023
785e266
New translations news.md (Portuguese, Brazilian)
rgommers Jun 26, 2023
94b375f
New translations news.md (Portuguese, Brazilian)
rgommers Jun 27, 2023
fb88c52
New translations news.md (Portuguese, Brazilian)
rgommers Jul 8, 2023
c765316
New translations news.md (Portuguese, Brazilian)
rgommers Jul 18, 2023
49a1b04
New translations config.yaml (Portuguese, Brazilian)
rgommers Jul 19, 2023
c806976
New translations news.md (Portuguese, Brazilian)
rgommers Jul 24, 2023
3d48017
New translations config.yaml (Portuguese, Brazilian)
rgommers Jul 24, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
New translations tabcontents.yaml (Portuguese, Brazilian)
  • Loading branch information
rgommers authored and steppi committed Jul 28, 2023
commit f534510c5e6e30d693aff5a7df53f41dc0a7e11c
116 changes: 58 additions & 58 deletions content/pt/tabcontents.yaml
Original file line number Diff line number Diff line change
@@ -1,27 +1,27 @@
machinelearning:
paras:
-
para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlow’s](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing. [MXNet](https://github.com/apache/incubator-mxnet) is another AI package, providing blueprints and templates for deep learning.
para2: Statistical techniques called [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://github.com/dmlc/xgboost), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
para1: O NumPy forma a base de bibliotecas de aprendizagem de máquina poderosas como [scikit-learn](https://scikit-learn.org) e [SciPy](https://www.scipy.org). À medida que a disciplina de aprendizagem de máquina cresce, a lista de bibliotecas construidas a partir do NumPy também cresce. As funcionalidades de deep learning do [TensorFlow](https://www.tensorflow.org) tem diversas aplicações — entre elas, reconhecimento de imagem e de fala, aplicações baseadas em texto, análise de séries temporais, e detecção de vídeo. O [PyTorch](https://pytorch.org), outra biblioteca de deep learning, é popular entre pesquisadores em visão computacional e processamento de linguagem natural. O [MXNet](https://github.com/apache/incubator-mxnet) é outro pacote de IA, que fornece templates e protótipos para deep learning.
para2: Técnicas estatísticas chamadas métodos de [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) tais como binning, bagging, stacking, e boosting estão entre os algoritmos de ML implementados por ferramentas tais como [XGBoost](https://github.com/dmlc/xgboost), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), e [CatBoost](https://catboost.ai) — um dos motores de inferência mais rápidos. [Yellowbrick](https://www.scikit-yb.org/en/latest/) e [Eli5](https://eli5.readthedocs.io/en/latest/) oferecem visualizações para aprendizagem de máquina.
arraylibraries:
intro:
-
text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
text: A API do NumPy é o ponto de partida quando bibliotecas são escritas para explorar hardware inovador, criar tipos de arrays especializados, ou adicionar capacidades além do que o NumPy fornece.
headers:
-
text: Array Library
text: Biblioteca de Arrays
-
text: Capabilities & Application areas
text: Recursos e áreas de aplicação
libraries:
-
title: Dask
text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
text: Arrays distribuídas e paralelismo avançado para análise, permitindo desempenho em escala.
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
-
title: CuPy
text: NumPy-compatible array library for GPU-accelerated computing with Python.
text: Biblioteca de matriz compatível com NumPy para computação acelerada pela GPU com Python.
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.chainer.org
Expand All @@ -33,43 +33,43 @@ arraylibraries:
url: https://github.com/google/jax
-
title: Xarray
text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization
text: Arrays multidimensionais rotuladas e indexadas para análise e visualização avançadas
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
-
title: Sparse
text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
text: Biblioteca de arrays compatíveis com o NumPy que pode ser integrada com Dask e álgebra linear esparsa da SciPy.
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
-
title: PyTorch
text: Deep learning framework that accelerates the path from research prototyping to production deployment.
text: Framework de deep learning que acelera o caminho entre prototipação de pesquisa e colocação em produção.
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
-
title: TensorFlow
text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
text: Uma plataforma completa para aprendizagem de máquina que permite construir e colocar em produção aplicações usando ML facilmente.
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
-
title: MXNet
text: Deep learning framework suited for flexible research prototyping and production.
text: Framework de deep learning voltado para flexibilizar prototipação em pesquisa e produção.
img: /images/content_images/arlib/mxnet_logo.png
alttext: MXNet
url: https://mxnet.apache.org/
-
title: Arrow
text: A cross-language development platform for columnar in-memory data and analytics.
text: Uma plataforma de desenvolvimento multi-linguagens para dados e análise para dados armazenados em colunas na memória.
img: /images/content_images/arlib/arrow.png
alttext: arrow
url: https://github.com/apache/arrow
-
title: xtensor
text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
text: Arrays multidimensionais com broadcasting e avaliação preguiçosa (lazy computing) para análise numérica.
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
Expand All @@ -81,86 +81,86 @@ arraylibraries:
url: https://xnd.io
-
title: uarray
text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
text: Sistema de backend Python que dissocia a API da implementação; unumpy fornece uma API NumPy.
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
-
title: tensorly
text: Tensor learning, algebra and backends to seamlessly use NumPy, MXNet, PyTorch, TensorFlow or CuPy.
text: Ferramentas para aprendizagem com tensores, algebra e backends para usar NumPy, MXNet, PyTorch, TensorFlow ou CuPy sem esforço.
img: /images/content_images/arlib/tensorly.png
alttext: tensorly
url: http://tensorly.org/stable/home.html
scientificdomains:
intro:
-
text: Nearly every scientist working in Python draws on the power of NumPy.
text: Quase todos os cientistas que trabalham em Python se baseiam na potência do NumPy.
-
text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
text: "NumPy traz o poder computacional de linguagens como C e Fortran para Python, uma linguagem muito mais fácil de aprender e usar. Com esse poder vem a simplicidade: uma solução no NumPy é frequentemente clara e elegante."
librariesrow1:
-
title: Quantum Computing
alttext: A computer chip.
title: Computação quântica
alttext: Um chip de computador.
img: /images/content_images/sc_dom_img/quantum_computing.svg
-
title: Statistical Computing
alttext: A line graph with the line moving up.
title: Computação estatística
alttext: Um gráfico com uma linha em movimento para cima.
img: /images/content_images/sc_dom_img/statistical_computing.svg
-
title: Signal Processing
alttext: A bar chart with positive and negative values.
title: Processamento de sinais
alttext: Um gráfico de barras com valores positivos e negativos.
img: /images/content_images/sc_dom_img/signal_processing.svg
-
title: Image Processing
alttext: An photograph of the mountains.
title: Processamento de imagens
alttext: Uma fotografia das montanhas.
img: /images/content_images/sc_dom_img/image_processing.svg
-
title: Graphs and Networks
alttext: A simple graph.
title: Gráficos e Redes
alttext: Um grafo simples.
img: /images/content_images/sc_dom_img/sd6.svg
-
title: Astronomy Processes
alttext: A telescope.
title: Processos de Astronomia
alttext: Um telescópio.
img: /images/content_images/sc_dom_img/astronomy_processes.svg
-
title: Cognitive Psychology
alttext: A human head with gears.
title: Psicologia Cognitiva
alttext: Uma cabeça humana com engrenagens.
img: /images/content_images/sc_dom_img/cognitive_psychology.svg
librariesrow2:
-
title: Bioinformatics
alttext: A strand of DNA.
title: Bioinformática
alttext: Um pedaço de DNA.
img: /images/content_images/sc_dom_img/bioinformatics.svg
-
title: Bayesian Inference
alttext: A graph with a bell-shaped curve.
title: Inferência Bayesiana
alttext: Um gráfico com uma curva em forma de sino.
img: /images/content_images/sc_dom_img/bayesian_inference.svg
-
title: Mathematical Analysis
alttext: Four mathematical symbols.
title: Análise Matemática
alttext: Quatro símbolos matemáticos.
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
-
title: Chemistry
alttext: A test tube.
title: Química
alttext: Um tubo de ensaio.
img: /images/content_images/sc_dom_img/chemistry.svg
-
title: Geoscience
alttext: The Earth.
title: Geociências
alttext: A Terra.
img: /images/content_images/sc_dom_img/geoscience.svg
-
title: Geographic Processing
alttext: A map.
title: Processamento Geográfico
alttext: Um mapa.
img: /images/content_images/sc_dom_img/GIS.svg
-
title: Architecture & Engineering
alttext: A microprocessor development board.
title: Arquitetura e Engenharia
alttext: Uma placa de desenvolvimento de microprocessador.
img: /images/content_images/sc_dom_img/robotics.svg
datascience:
intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
intro: "NumPy está no centro de um rico ecossistema de bibliotecas de ciência de dados. Um fluxo de trabalho típico de ciência de dados exploratório pode parecer assim:"
image1:
-
img: /images/content_images/ds-landscape.png
alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
alttext: Diagrama de bibliotecas Python. As cinco categorias são 'Extrair, Transformar, Carregar', 'Exploração de Dados', 'Modelo de Dados', 'Avaliação de Dados' e 'Apresentação de Dados'.
image2:
-
img: /images/content_images/data-science.png
Expand All @@ -182,37 +182,37 @@ visualization:
-
url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: A streamplot made in matplotlib
alttext: Um streamplot feito em matplotlib
-
url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: A scatter-plot graph made in ggpy
alttext: Um gráfico scatter-plot feito em ggpy
-
url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: A box-plot made in plotly
alttext: Um box-plot feito no plotly
-
url: https://altair-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: A streamgraph made in altair
alttext: Um gráfico streamgraph feito em altair
-
url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
alttext: A plot duplo com dois tipos de gráficos, um plot-graph e um gráfico de frequência feitos no seaborn
-
url: https://docs.pyvista.org/examples/index.html
img: /images/content_images/v_pyvista.png
alttext: A 3D volume rendering made in PyVista.
alttext: Uma renderização de volume 3D feita no PyVista.
-
url: https://napari.org
img: /images/content_images/v_napari.png
alttext: A multi-dimensionan image made in napari.
alttext: Uma imagem multidimensional, feita em napari.
-
url: https://vispy.org/gallery/index.html
img: /images/content_images/v_vispy.png
alttext: A Voronoi diagram made in vispy.
alttext: Diagrama de Voronoi feito com vispy.
content:
-
text: NumPy is an essential component in the burgeoning [Python visualization landscape](https://pyviz.org/overviews/index.html), which includes [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari), and [PyVista](https://github.com/pyvista/pyvista), to name a few.
text: NumPy é um componente essencial no crescente [campo de visualização em Python](https://pyviz.org/overviews/index.html), que inclui [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari), e [PyVista](https://github.com/pyvista/pyvista), para citar alguns.
-
text: NumPy's accelerated processing of large arrays allows researchers to visualize datasets far larger than native Python could handle.
text: O processamento de grandes arrays acelerado pela NumPy permite que os pesquisadores visualizem conjuntos de dados muito maiores do que o Python nativo poderia permitir.
0