8000 Add Chinese translations by rgommers · Pull Request #456 · numpy/numpy.org · GitHub
[go: up one dir, main page]

Skip to content

Add Chinese translations #456

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Changes from 1 commit
Commits
10000
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Add tabcontents.yaml for Chinese
  • Loading branch information
rgommers committed Jul 23, 2021
commit 9bafafe5c0b2b3ca6478e927fc3cb15d6e5d6255
189 changes: 189 additions & 0 deletions content/zh/tabcontents.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,189 @@
machinelearning:
paras:
- para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlow’s](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing. [MXNet](https://github.com/apache/incubator-mxnet) is another AI package, providing blueprints and templates for deep learning.
para2: Statistical techniques called [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://github.com/dmlc/xgboost), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.

arraylibraries:
intro:
- text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.

headers:
- text: Array Library
- text: Capabilities & Application areas

libraries:
- title: Dask
text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
- title: CuPy
text: NumPy-compatible array library for GPU-accelerated computing with Python.
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.chainer.org
- title: JAX
text: "Composable transformations of NumPy programs differentiate: vectorize, just-in-time compilation to GPU/TPU."
img: /images/content_images/arlib/jax_logo_250px.png
alttext: JAX
url: https://github.com/google/jax
- title: Xarray
text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
- title: Sparse
text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
- title: PyTorch
text: Deep learning framework that accelerates the path from research prototyping to production deployment.
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
- title: TensorFlow
text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
- title: MXNet
text: Deep learning framework suited for flexible research prototyping and production.
img: /images/content_images/arlib/mxnet_logo.png
alttext: MXNet
url: https://mxnet.apache.org/
- title: Arrow
text: A cross-language development platform for columnar in-memory data and analytics.
img: /images/content_images/arlib/arrow.png
alttext: arrow
url: https://github.com/apache/arrow
- title: xtensor
text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
- title: XND
text: Develop libraries for array computing, recreating NumPy's foundational concepts.
img: /images/content_images/arlib/xnd.png
alttext: xnd
url: https://xnd.io
- title: uarray
text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
- title: tensorly
text: Tensor learning, algebra and backends to seamlessly use NumPy, MXNet, PyTorch, TensorFlow or CuPy.
img: /images/content_images/arlib/tensorly.png
alttext: tensorly
url: http://tensorly.org/stable/home.html

scientificdomains:
intro:
- text: Nearly every scientist working in Python draws on the power of NumPy.
- text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."

librariesrow1:
- title: Quantum Computing
alttext: A computer chip.
img: /images/content_images/sc_dom_img/quantum_computing.svg
- title: Statistical Computing
alttext: A line graph with the line moving up.
img: /images/content_images/sc_dom_img/statistical_computing.svg
- title: Signal Processing
alttext: A bar chart with positive and negative values.
img: /images/content_images/sc_dom_img/signal_processing.svg
- title: Image Processing
alttext: An photograph of the mountains.
img: /images/content_images/sc_dom_img/image_processing.svg
- title: Graphs and Networks
alttext: A simple graph.
img: /images/content_images/sc_dom_img/sd6.svg
- title: Astronomy Processes
alttext: A telescope.
img: /images/content_images/sc_dom_img/astronomy_processes.svg
- title: Cognitive Psychology
alttext: A human head with gears.
img: /images/content_images/sc_dom_img/cognitive_psychology.svg

librariesrow2:
- title: Bioinformatics
alttext: A strand of DNA.
img: /images/content_images/sc_dom_img/bioinformatics.svg
- title: Bayesian Inference
alttext: A graph with a bell-shaped curve.
img: /images/content_images/sc_dom_img/bayesian_inference.svg
- title: Mathematical Analysis
alttext: Four mathematical symbols.
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
- title: Chemistry
alttext: A test tube.
img: /images/content_images/sc_dom_img/chemistry.svg
- title: Geoscience
alttext: The Earth.
img: /images/content_images/sc_dom_img/geoscience.svg
- title: Geographic Processing
alttext: A map.
img: /images/content_images/sc_dom_img/GIS.svg
- title: Architecture & Engineering
alttext: A microprocessor development board.
img: /images/content_images/sc_dom_img/robotics.svg

datascience:

intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"

image1:
- img: /images/content_images/ds-landscape.png
alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.

image2:
- img: /images/content_images/data-science.png
alttext: Diagram of three overlapping circle. The circles labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.

examples:
- text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org),[ Intake](https://intake.readthedocs.io),[PyJanitor](https://pyjanitor.readthedocs.io/)"
- text: "<b>Exploratory analysis: </b>[Jupyter](https://jupyter.org),[Seaborn](https://seaborn.pydata.org),[ Matplotlib](https://matplotlib.org),[ Altair](https://altair-viz.github.io)"
- text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org),[ statsmodels](https://www.statsmodels.org/stable/index.html),[ PyMC3](https://docs.pymc.io),[ spaCy](https://spacy.io)"
- text: "<b>Report in a dashboard: </b>[Dash](https://plotly.com/dash),[ Panel](https://panel.holoviz.org),[ Voila](https://github.com/voila-dashboards/voila)"

content:
- text: For high data volumes, [Dask](https://dask.org) and[Ray](https://ray.io/) are designed to scale. Stabledeployments rely on data versioning ([DVC](https://dvc.org)),experiment tracking ([MLFlow](https://mlflow.org)), andworkflow automation ([Airflow](https://airflow.apache.org) and[Prefect](https://www.prefect.io)).

visualization:
images:
- url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: A streamplot made in matplotlib
- url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: A scatter-plot graph made in ggpy
- url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: A box-plot made in plotly
- url: https://altair-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: A streamgraph made in altair
- url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
- url: https://docs.pyvista.org/examples/index.html
img: /images/content_images/v_pyvista.png
alttext: A 3D volume rendering made in PyVista.
- url: https://napari.org
img: /images/content_images/v_napari.png
alttext: A multi-dimensionan image made in napari.
- url: http://vispy.org/gallery.html
img: /images/content_images/v_vispy.png
alttext: A Voronoi diagram made in vispy.

content:
- text: NumPy is an essential component in the burgeoning
[Python visualization landscape](https://pyviz.org/overviews/index.html),
which includes [Matplotlib](https://matplotlib.org),
[Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly),
[Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/),
[Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari),
and [PyVista](https://github.com/pyvista/pyvista), to name a few.
- text: NumPy's accelerated processing of large arrays allows researchers to visualize
datasets far larger than native Python could handle.
0