-
-
Notifications
You must be signed in to change notification settings - Fork 10.9k
MAINT: Make the refactor suggested in prepare_index #8278
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
87e1294
bfd70c2
37e6e1f
3a0ad85
8c4e556
5d9315c
966b2c7
9832f05
68bad6a
c587963
105e0b4
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -139,6 +139,196 @@ PyArray_MapIterSwapAxes(PyArrayMapIterObject *mit, PyArrayObject **ret, int getm | |
*ret = (PyArrayObject *)new; | ||
} | ||
|
||
NPY_NO_EXPORT NPY_INLINE void | ||
multi_DECREF(PyObject **objects, npy_intp n) | ||
{ | ||
npy_intp i; | ||
for (i = 0; i < n; i++) { | ||
Py_DECREF(objects[i]); | ||
} | ||
} | ||
|
||
/** | ||
* Unpack a tuple into an array of new references. Returns the number of objects | ||
* unpacked. | ||
* | ||
* Useful if a tuple is being iterated over multiple times, or for a code path | ||
* that doesn't always want the overhead of allocating a tuple. | ||
*/ | ||
NPY_NO_EXPORT NPY_INLINE npy_intp | ||
unpack_tuple(PyTupleObject *index, PyObject **result, npy_intp result_n) | ||
{ | ||
npy_intp n, i; | ||
n = PyTuple_GET_SIZE(index); | ||
if (n > result_n) { | ||
PyErr_SetString(PyExc_IndexError, | ||
"too many indices for array"); | ||
return -1; | ||
} | ||
for (i = 0; i < n; i++) { | ||
result[i] = PyTuple_GET_ITEM(index, i); | ||
Py_INCREF(result[i]); | ||
} | ||
return n; | ||
} | ||
|
||
/* Unpack a single scalar index, taking a new reference to match unpack_tuple */ | ||
NPY_NO_EXPORT NPY_INLINE npy_intp | ||
unpack_scalar(PyObject *index, PyObject **result, npy_intp result_n) | ||
{ | ||
Py_INCREF(index); | ||
result[0] = index; | ||
return 1; | ||
} | ||
|
||
/** | ||
* Turn an index argument into a c-array of `PyObject *`s, one for each index. | ||
* | ||
* When a scalar is passed, this is written directly to the buffer. When a | ||
* tuple is passed, the tuple elements are unpacked into the buffer. | ||
* | ||
* When some other sequence is passed, this implements the following section | ||
* from the advanced indexing docs to decide whether to unpack or just write | ||
* one element: | ||
* | ||
* > In order to remain backward compatible with a common usage in Numeric, | ||
* > basic slicing is also initiated if the selection object is any non-ndarray | ||
* > sequence (such as a list) containing slice objects, the Ellipsis object, | ||
* > or the newaxis object, but not for integer arrays or other embedded | ||
* > sequences. | ||
* | ||
* It might be worth deprecating this behaviour (gh-4434), in which case the | ||
* entire function should become a simple check of PyTuple_Check. | ||
* | ||
* @param index The index object, which may or may not be a tuple. This is | ||
* a borrowed reference. | ||
* @param result An empty buffer of PyObject* to write each index component | ||
* to. The references written are new. | ||
* @param result_n The length of the result buffer | ||
* | ||
* @returns The number of items in `result`, or -1 if an error occured. | ||
* The entries in `result` at and beyond this index should be | ||
* assumed to contain garbage, even if they were initialized | ||
* to NULL, so are not safe to Py_XDECREF. Use multi_DECREF to | ||
* dispose of them. | ||
*/ | ||
NPY_NO_EXPORT npy_intp | ||
unpack_indices(PyObject *index, PyObject **result, npy_intp result_n) | ||
{ | ||
npy_intp n, i; | ||
npy_bool commit_to_unpack; | ||
|
||
/* Fast route for passing a tuple */ | ||
if (PyTuple_CheckExact(index)) { | ||
return unpack_tuple((PyTupleObject *)index, result, result_n); | ||
} | ||
|
||
/* Obvious single-entry cases */ | ||
if (0 /* to aid macros below */ | ||
#if !defined(NPY_PY3K) | ||
8000 || PyInt_CheckExact(index) | ||
#else | ||
|| PyLong_CheckExact(index) | ||
#endif | ||
|| index == Py_None | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. brackets? |
||
|| PySlice_Check(index) | ||
|| PyArray_Check(index) | ||
|| !PySequence_Check(index)) { | ||
|
||
return unpack_scalar(index, result, result_n); | ||
} | ||
|
||
/* | ||
* Passing a tuple subclass - coerce to the base type. This incurs an | ||
* allocation, but doesn't need to be a fast path anyway | ||
*/ | ||
if (PyTuple_Check(index)) { | ||
PyTupleObject *tup = (PyTupleObject *) PySequence_Tuple(index); | ||
if (tup == NULL) { | ||
return -1; | ||
} | ||
n = unpack_tuple(tup, result, result_n); | ||
Py_DECREF(tup); | ||
return n; | ||
} | ||
|
||
/* | ||
* At this point, we're left with a non-tuple, non-array, sequence: | ||
* typically, a list. We use some somewhat-arbitrary heuristics from here | ||
* onwards to decided whether to treat that list as a single index, or a | ||
* list of indices. | ||
*/ | ||
|
||
/* if len fails, treat like a scalar */ | ||
n = PySequence_Size(index); | ||
if (n < 0) { | ||
PyErr_Clear(); | ||
return unpack_scalar(index, result, result_n); | ||
} | ||
|
||
/* | ||
* Backwards compatibility only takes effect for short sequences - otherwise | ||
* we treat it like any other scalar. | ||
* | ||
* Sequences < NPY_MAXDIMS with any slice objects | ||
* or newaxis, Ellipsis or other arrays or sequences | ||
* embedded, are considered equivalent to an indexing | ||
* tuple. (`a[[[1,2], [3,4]]] == a[[1,2], [3,4]]`) | ||
*/ | ||
if (n >= NPY_MAXDIMS) { | ||
return unpack_scalar(index, result, result_n); | ||
} | ||
|
||
/* In case we change result_n elsewhere */ | ||
assert(n <= result_n); | ||
|
||
/* | ||
* Some other type of short sequence - assume we should unpack it like a | ||
* tuple, and then decide whether that was actually necessary. | ||
*/ | ||
commit_to_unpack = 0; | ||
for (i = 0; i < n; i++) { | ||
PyObject *tmp_obj = result[i] = PySequence_GetItem(index, i); | ||
|
||
if (commit_to_unpack) { | ||
/* propagate errors */ | ||
if (tmp_obj == NULL) { | ||
multi_DECREF(result, i); | ||
return -1; | ||
} | ||
} | ||
else { | ||
/* | ||
* if getitem fails (unusual) before we've committed, then stop | ||
* unpacking | ||
*/ | ||
if (tmp_obj == NULL) { | ||
PyErr_Clear(); | ||
break; | ||
} | ||
|
||
/* decide if we should treat this sequence like a tuple */ | ||
if (PyArray_Check(tmp_obj) | ||
|| PySequence_Check(tmp_obj) | ||
|| PySlice_Check(tmp_obj) | ||
|| tmp_obj == Py_Ellipsis | ||
|| tmp_obj == Py_None) { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Again, I think we usually put brackets, but no big deal There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Don't agree - we use brackets to make precedence of There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Ok, frankly don't care much, its not |
||
commit_to_unpack = 1; | ||
} | ||
} | ||
} | ||
|
||
/* unpacking was the right thing to do, and we already did it */ | ||
if (commit_to_unpack) { | ||
return n; | ||
} | ||
/* got to the end, never found an indication that we should have unpacked */ | ||
else { | ||
/* we partially filled result, so empty it first */ | ||
multi_DECREF(result, i); | ||
return unpack_scalar(index, result, result_n); | ||
} | ||
} | ||
|
||
/** | ||
* Prepare an npy_index_object from the python slicing object. | ||
|
@@ -174,89 +364,23 @@ prepare_index(PyArrayObject *self, PyObject *index, | |
int i; | ||
npy_intp n; | ||
|
||
npy_bool make_tuple = 0; | ||
PyObject *obj = NULL; | ||
PyArrayObject *arr; | ||
|
||
int index_type = 0; | ||
int ellipsis_pos = -1; | ||
|
||
/* | ||
* The index might be a multi-dimensional index, but not yet a tuple | ||
* this makes it a tuple in that case. | ||
* | ||
* TODO: Refactor into its own function. | ||
* The choice of only unpacking `2*NPY_MAXDIMS` items is historic. | ||
* The longest "reasonable" index that produces a result of <= 32 dimensions | ||
* is `(0,)*np.MAXDIMS + (None,)*np.MAXDIMS`. Longer indices can exist, but | ||
* are uncommon. | ||
*/ | ||
if (!PyTuple_CheckExact(index) | ||
/* Next three are just to avoid slow checks */ | ||
#if !defined(NPY_PY3K) | ||
&& (!PyInt_CheckExact(index)) | ||
#else | ||
&& (!PyLong_CheckExact(index)) | ||
#endif | ||
&& (index != Py_None) | ||
&& (!PySlice_Check(index)) | ||
&& (!PyArray_Check(index)) | ||
&& (PySequence_Check(index))) { | ||
/* | ||
* Sequences < NPY_MAXDIMS with any slice objects | ||
* or newaxis, Ellipsis or other arrays or sequences | ||
* embedded, are considered equivalent to an indexing | ||
* tuple. (`a[[[1,2], [3,4]]] == a[[1,2], [3,4]]`) | ||
*/ | ||
PyObject *raw_indices[NPY_MAXDIMS*2]; | ||
|
||
if (PyTuple_Check(index)) { | ||
/* If it is already a tuple, make it an exact tuple anyway */ | ||
n = 0; | ||
make_tuple = 1; | ||
} | ||
else { | ||
n = PySequence_Size(index); | ||
} | ||
if (n < 0 || n >= NPY_MAXDIMS) { | ||
n = 0; | ||
} | ||
for (i = 0; i < n; i++) { | ||
PyObject *tmp_obj = PySequence_GetItem(index, i); | ||
/* if getitem fails (unusual) treat this as a single index */ | ||
if (tmp_obj == NULL) { | ||
PyErr_Clear(); | ||
make_tuple = 0; | ||
break; | ||
} | ||
if (PyArray_Check(tmp_obj) || PySequence_Check(tmp_obj) | ||
|| PySlice_Check(tmp_obj) || tmp_obj == Py_Ellipsis | ||
|| tmp_obj == Py_None) { | ||
make_tuple = 1; | ||
Py_DECREF(tmp_obj); | ||
break; | ||
} | ||
Py_DECREF(tmp_obj); | ||
} | ||
|
||
if (make_tuple) { | ||
/* We want to interpret it as a tuple, so make it one */ | ||
index = PySequence_Tuple(index); | ||
if (index == NULL) { | ||
return -1; | ||
} | ||
} | ||
} | ||
|
||
/* If the index is not a tuple, handle it the same as (index,) */ | ||
if (!PyTuple_CheckExact(index)) { | ||
obj = index; | ||
index_ndim = 1; | ||
} | ||
else { | ||
n = PyTuple_GET_SIZE(index); | ||
if (n > NPY_MAXDIMS * 2) { | ||
PyErr_SetString(PyExc_IndexError, | ||
"too many indices for array"); | ||
goto fail; | ||
} | ||
index_ndim = (int)n; | ||
obj = NULL; | ||
index_ndim = unpack_indices(index, raw_indices, NPY_MAXDIMS*2); | ||
if (index_ndim == -1) { | ||
return -1; | ||
} | ||
|
||
/* | ||
|
@@ -275,14 +399,7 @@ prepare_index(PyArrayObject *self, PyObject *index, | |
goto failed_building_indices; | ||
} | ||
|
||
/* Check for single index. obj is already set then. */ | ||
if ((curr_idx != 0) || (obj == NULL)) { | ||
obj = PyTuple_GET_ITEM(index, get_idx++); | ||
} | ||
else { | ||
/* only one loop */ | ||
get_idx += 1; | ||
} | ||
obj = raw_indices[get_idx++]; | ||
|
||
/**** Try the cascade of possible indices ****/ | ||
|
||
|
@@ -686,20 +803,15 @@ prepare_index(PyArrayObject *self, PyObject *index, | |
*ndim = new_ndim + fancy_ndim; | ||
*out_fancy_ndim = fancy_ndim; | ||
|
||
if (make_tuple) { | ||
Py_DECREF(index); | ||
} | ||
multi_DECREF(raw_indices, index_ndim); | ||
|
||
return index_type; | ||
|
||
failed_building_indices: | ||
for (i=0; i < curr_idx; i++) { | ||
Py_XDECREF(indices[i].object); | ||
} | ||
fail: | ||
if (make_tuple) { | ||
Py_DECREF(index); | ||
} | ||
multi_DECREF(raw_indices, index_ndim); | ||
return -1; | ||
} | ||
|
||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
First wasn't sure I like this, but it seems harmless :).