-
-
Notifications
You must be signed in to change notification settings - Fork 11.1k
ENH: Add an "axis" kwarg to numpy.unique #3584
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 1 commit
4fcf6a8
a9f8ece
fccd7fe
2544df4
d9ea28d
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
numpy.unique
- Loading branch information
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -90,7 +90,7 @@ def ediff1d(ary, to_end=None, to_begin=None): | |
|
||
return ed | ||
|
||
def unique(ar, return_index=False, return_inverse=False): | ||
def unique(ar, return_index=False, return_inverse=False, axis=None): | ||
""" | ||
Find the unique elements of an array. | ||
|
||
|
@@ -102,13 +102,18 @@ def unique(ar, return_index=False, return_inverse=False): | |
Parameters | ||
---------- | ||
ar : array_like | ||
Input array. This will be flattened if it is not already 1-D. | ||
Input array. Unless `axis` is specified, this will be flattened if it | ||
is not already 1-D. | ||
return_index : bool, optional | ||
If True, also return the indices of `ar` that result in the unique | ||
array. | ||
If True, also return the indices of `ar` along the specified axis that | ||
result in the unique array. | ||
return_inverse : bool, optional | ||
If True, also return the indices of the unique array that can be used | ||
to reconstruct `ar`. | ||
If True, also return the indices of the unique array along the | ||
specified axis that can be used to reconstruct `ar`. | ||
axis : int or None, optional | ||
The axis to operate on. If None, `ar` will be flattened beforehand. | ||
Object arrays or structured arrays that contain objects are not | ||
supported if the `axis` kwarg is used. | ||
|
||
Returns | ||
------- | ||
|
@@ -134,6 +139,12 @@ def unique(ar, return_index=False, return_inverse=False): | |
>>> np.unique(a) | ||
array([1, 2, 3]) | ||
|
||
Return the unique rows of a 2D array | ||
|
||
>>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]]) | ||
>>> np.unique(a, axis=0) | ||
array([[1, 1, 0], [2, 3, 4]]) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Seems wrong copy paste, should be [1, 0, 0] |
||
|
||
Return the indices of the original array that give the unique values: | ||
|
||
>>> a = np.array(['a', 'b', 'b', 'c', 'a']) | ||
|
@@ -158,6 +169,45 @@ def unique(ar, return_index=False, return_inverse=False): | |
>>> u[indices] | ||
array([1, 2, 6, 4, 2, 3, 2]) | ||
|
||
""" | ||
if axis is None or ar.ndim == 1: | ||
return _unique1d(ar, return_index, return_inverse) | ||
|
||
ar = np.swapaxes(ar, axis, 0) | ||
orig_shape, orig_dtype = ar.shape, ar.dtype | ||
# Must reshape to a contiguous 2D array for this to work... | ||
ar = ar.reshape(orig_shape[0], -1) | ||
ar = np.ascontiguousarray(ar) | ||
|
||
if ar.dtype.char in (np.typecodes['AllInteger'] + 'S'): | ||
# Optimization inspired by <http://stackoverflow.com/a/16973510/325565> | ||
dtype = np.dtype((np.void, ar.dtype.itemsize * ar.shape[1])) | ||
else: | ||
dtype = [('f{i}'.format(i=i), ar.dtype) for i in range(ar.shape[1])] | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Not sure if it is worth it, but if the dtype has no fields, you probably could also use [('', ar.dtype, ar.shape[1])]. (Also could write |
||
|
||
try: | ||
consolidated = ar.view(dtype) | ||
except TypeError: | ||
# There's no good way to do this for object arrays, etc... | ||
msg = 'The axis argument to unique is not supported for dtype {dt}' | ||
raise TypeError(msg.format(dt=ar.dtype)) | ||
|
||
def reshape_uniq(uniq): | ||
uniq = uniq.view(orig_dtype) | ||
uniq = uniq.reshape(-1, *orig_shape[1:]) | ||
uniq = np.swapaxes(uniq, 0, axis) | ||
return uniq | ||
|
||
output = _unique1d(consolidated, return_index, return_inverse) | ||
if not (return_index or return_inverse): | ||
return reshape_uniq(output) | ||
else: | ||
uniq = reshape_uniq(output[0]) | ||
return tuple([uniq] + list(output[1:])) | ||
|
||
def _unique1d(ar, return_index=False, return_inverse=False): | ||
""" | ||
Find the unique elements of an array. | ||
""" | ||
try: | ||
ar = ar.flatten() | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -65,6 +65,68 @@ def check_all(a, b, i1, i2, dt): | |
bb = np.array(list(zip(b, b)), dt) | ||
check_all(aa, bb, i1, i2, dt) | ||
|
||
def test_unique_axis(self): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Maybe make this a class? TestUnique. move the other unique tests into it, and then you can if you like split the error checks into their own function (since run_axis_tests is part of the class). I would like some short tests for invalid axes, too. (actually, the last point doesn't matter much, I suppose, so whatever you like) |
||
def run_axis_tests(dtype): | ||
data = np.array([[0, 1, 0, 0], | ||
[1, 0, 0, 0], | ||
[0, 1, 0, 0], | ||
[1, 0, 0, 0]]).astype(dtype) | ||
|
||
msg = 'Unique with 1d array and axis=0 failed' | ||
result = np.array([0,1]) | ||
assert_array_equal(unique(data), result.astype(dtype), msg) | ||
|
||
msg = 'Unique with 2d array and axis=0 failed' | ||
result = np.array([[0, 1, 0, 0], [1, 0, 0, 0]]) | ||
assert_array_equal(unique(data, axis=0), result.astype(dtype), msg) | ||
|
||
msg = 'Unique with 2d array and axis=1 failed' | ||
result = np.array([[0, 0, 1], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) | ||
assert_array_equal(unique(data, axis=1), result.astype(dtype), msg) | ||
|
||
msg = 'Unique with 3d array and axis=2 failed' | ||
data3d = np.dstack([data] * 3) | ||
result = data3d[..., :1] | ||
assert_array_equal(unique(data3d, axis=2), result, msg) | ||
|
||
uniq, idx, inv = unique(data, axis=0, return_index=True, | ||
8000 td> | return_inverse=True) | |
msg = "Unique's return_index=True failed with axis=0" | ||
assert_array_equal(data[idx], uniq, msg) | ||
msg = "Unique's return_inverse=True failed with axis=0" | ||
assert_array_equal(uniq[inv], data) | ||
|
||
uniq, idx, inv = unique(data, axis=1, return_index=True, | ||
return_inverse=True) | ||
msg = "Unique's return_index=True failed with axis=1" | ||
assert_array_equal(data[:,idx], uniq) | ||
msg = "Unique's return_inverse=True failed with axis=1" | ||
assert_array_equal(uniq[:,inv], data) | ||
|
||
types = [] | ||
types.extend(np.typecodes['AllInteger']) | ||
types.extend(np.typecodes['AllFloat']) | ||
types.append('datetime64[D]') | ||
types.append('timedelta64[D]') | ||
types.append([('a', int), ('b', int)]) | ||
types.append([('a', int), ('b', float)]) | ||
|
||
for dtype in types: | ||
run_axis_tests(dtype) | ||
|
||
assert_raises(TypeError, run_axis_tests, object) | ||
assert_raises(TypeError, run_axis_tests, [('a', int), ('b', object)]) | ||
|
||
msg = 'Non-bitwise-equal booleans test failed' | ||
data = np.arange(10, dtype=np.uint8).reshape(-1, 2).view(bool) | ||
result = np.array([[False, True], [True, True]], dtype=bool) | ||
assert_array_equal(unique(data, axis=0), result, msg) | ||
|
||
msg = 'Negative zero equality test failed' | ||
data = np.array([[-0.0, 0.0], [0.0, -0.0], [-0.0, 0.0], [0.0, -0.0]]) | ||
result = np.array([[-0.0, 0.0]]) | ||
assert_array_equal(unique(data, axis=0), result, msg) | ||
|
||
def test_intersect1d(self): | ||
# unique inputs | ||
a = np.array([5, 7, 1, 2]) | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Maybe we can say this clearer? Thinking about "along", or saying that all other axis are the elements. There was some discussion about other names for the argument, but I am not sure if there was any better idea. Axis seems fine to me though.