8000 Adding np.nanmean(), nanstd(), and nanvar() by WeatherGod · Pull Request #3297 · numpy/numpy · GitHub
[go: up one dir, main page]

Skip to content

Adding np.nanmean(), nanstd(), and nanvar() #3297

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 4 commits into from
Closed
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Added tests for nanmean(), nanvar(), nanstd()
  • Loading branch information
WeatherGod committed May 16, 2013
commit a4571585455348e5cc535f0b753434d9bcfc5b94
65 changes: 65 additions & 0 deletions numpy/core/tests/test_numeric.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,18 +177,36 @@ def test_mean(self):
assert_(all(mean(A,0) == array([2.5,3.5,4.5])))
assert_(all(mean(A,1) == array([2.,5.])))

def test_nanmean(self):
A = [[1, nan, nan], [nan, 4, 5]]
assert_(nanmean(A) == (10.0 / 3))
assert_(all(nanmean(A,0) == array([1, 4, 5])))
assert_(all(nanmean(A,1) == array([1, 4.5])))

def test_std(self):
A = [[1,2,3],[4,5,6]]
assert_almost_equal(std(A), 1.707825127659933)
assert_almost_equal(std(A,0), array([1.5, 1.5, 1.5]))
assert_almost_equal(std(A,1), array([0.81649658, 0.81649658]))

def test_nanstd(self):
A = [[1, nan, nan], [nan, 4, 5]]
assert_almost_equal(nanstd(A), 1.699673171197595)
assert_almost_equal(nanstd(A,0), array([0.0, 0.0, 0.0]))
assert_almost_equal(nanstd(A,1), array([0.0, 0.5]))

def test_var(self):
A = [[1,2,3],[4,5,6]]
assert_almost_equal(var(A), 2.9166666666666665)
assert_almost_equal(var(A,0), array([2.25, 2.25, 2.25]))
assert_almost_equal(var(A,1), array([0.66666667, 0.66666667]))

def test_nanvar(self):
A = [[1, nan, nan], [nan, 4, 5]]
assert_almost_equal(nanvar(A), 2.88888888889)
assert_almost_equal(nanvar(A,0), array([0.0, 0.0, 0.0]))
assert_almost_equal(nanvar(A,1), array([0.0, 0.25]))


class TestBoolScalar(TestCase):
def test_logical(self):
Expand Down Expand Up @@ -1291,6 +1309,23 @@ def test_no_parameter_modification(self):
assert_array_equal(x, array([inf, 1]))
assert_array_equal(y, array([0, inf]))

class TestNaNMean(TestCase):
def setUp(self):
self.A = array([1,nan,-1,nan,nan,1,-1])
self.B = array([nan, nan, nan, nan])
self.real_mean = 0

def test_basic(self):
assert_almost_equal(nanmean(self.A),self.real_mean)

def test_allnans(self):
assert_(isnan(nanmean(self.B)))

def test_empty(self):
assert_(isnan(nanmean(array([]))))




class TestStdVar(TestCase):
def setUp(self):
Expand All @@ -1313,6 +1348,36 @@ def test_ddof2(self):
assert_almost_equal(std(self.A,ddof=2)**2,
self.real_var*len(self.A)/float(len(self.A)-2))

class TestNaNStdVar(TestCase):
def setUp(self):
self.A = array([nan,1,-1,nan,1,nan,-1])
self.B = array([nan, nan, nan, nan])
self.real_var = 1

def test_basic(self):
assert_almost_equal(nanvar(self.A),self.real_var)
assert_almost_equal(nanstd(self.A)**2,self.real_var)

def test_ddof1(self):
assert_almost_equal(nanvar(self.A,ddof=1),
self.real_var*sum(~isnan(self.A))/float(sum(~isnan(self.A))-1))
assert_almost_equal(nanstd(self.A,ddof=1)**2,
self.real_var*sum(~isnan(self.A))/float(sum(~isnan(self.A))-1))

def test_ddof2(self):
assert_almost_equal(nanvar(self.A,ddof=2),
self.real_var*sum(~isnan(self.A))/float(sum(~isnan(self.A))-2))
assert_almost_equal(nanstd(self.A,ddof=2)**2,
self.real_var*sum(~isnan(self.A))/float(sum(~isnan(self.A))-2))

def test_allnans(self):
assert_(isnan(nanvar(self.B)))
assert_(isnan(nanstd(self.B)))

def test_empty(self):
assert_(isnan(nanvar(array([]))))
assert_(isnan(nanstd(array([]))))


class TestStdVarComplex(TestCase):
def test_basic(self):
Expand Down
0