10000 ENH: Vectorize np.sort and np.partition with AVX2 by r-devulap · Pull Request #25045 · numpy/numpy · GitHub
[go: up one dir, main page]

Skip to content

ENH: Vectorize np.sort and np.partition with AVX2 #25045

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 22 commits into from
Dec 4, 2023
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Separate testing np.partition and np.argpartition
  • Loading branch information
Raghuveer Devulapalli committed Nov 30, 2023
commit 9f1faa191cc927bd229207b25d9edbfe24b2f14d
67 changes: 36 additions & 31 deletions numpy/_core/tests/test_multiarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -2817,10 +2817,10 @@ def test_partition(self):
tgt = np.sort(d)
assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0])
assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1])
assert_array_equal(d[np.argpartition(d, 0, kind=k)],
np.partition(d, 0, kind=k))
assert_array_equal(d[np.argpartition(d, 1, kind=k)],
np.partition(d, 1, kind=k))
self.assert_partitioned(np.partition(d, 0, kind=k), [0])
self.assert_partitioned(d[np.argpartition(d, 0, kind=k)], [0])
self.assert_partitioned(np.partition(d, 1, kind=k), [1])
self.assert_partitioned(d[np.argpartition(d, 1, kind=k)], [1])
for i in range(d.size):
d[i:].partition(0, kind=k)
assert_array_equal(d, tgt)
Expand All @@ -2832,12 +2832,12 @@ def test_partition(self):
assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0])
assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1])
assert_array_equal(np.partition(d, 2, kind=k)[2], tgt[2])
assert_array_equal(d[np.argpartition(d, 0, kind=k)],
np.partition(d, 0, kind=k))
assert_array_equal(d[np.argpartition(d, 1, kind=k)],
np.partition(d, 1, kind=k))
assert_array_equal(d[np.argpartition(d, 2, kind=k)],
np.partition(d, 2, kind=k))
self.assert_partitioned(np.partition(d, 0, kind=k), [0])
self.assert_partitioned(d[np.argpartition(d, 0, kind=k)], [0])
self.assert_partitioned(np.partition(d, 1, kind=k), [1])
self.assert_partitioned(d[np.argpartition(d, 1, kind=k)], [1])
self.assert_partitioned(np.partition(d, 2, kind=k), [2])
self.assert_partitioned(d[np.argpartition(d, 2, kind=k)], [2])
for i in range(d.size):
d[i:].partition(0, kind=k)
assert_array_equal(d, tgt)
Expand All @@ -2851,26 +2851,26 @@ def test_partition(self):
d = np.arange(49)
assert_equal(np.partition(d, 5, kind=k)[5], 5)
assert_equal(np.partition(d, 15, kind=k)[15], 15)
assert_array_equal(d[np.argpartition(d, 5, kind=k)],
np.partition(d, 5, kind=k))
assert_array_equal(d[np.argpartition(d, 15, kind=k)],
np.partition(d, 15, kind=k))
self.assert_partitioned(np.partition(d, 5, kind=k), [5])
self.assert_partitioned(d[np.argpartition(d, 5, kind=k)], [5])
self.assert_partitioned(np.partition(d, 15, kind=k), [15])
self.assert_partitioned(d[np.argpartition(d, 15, kind=k)], [15])

# rsorted
d = np.arange(47)[::-1]
assert_equal(np.partition(d, 6, kind=k)[6], 6)
assert_equal(np.partition(d, 16, kind=k)[16], 16)
assert_array_equal(d[np.argpartition(d, 6, kind=k)],
np.partition(d, 6, kind=k))
assert_array_equal(d[np.argpartition(d, 16, kind=k)],
np.partition(d, 16, kind=k))
self.assert_partitioned(np.partition(d, 6, kind=k), [6])
self.assert_partitioned(d[np.argpartition(d, 6, kind=k)], [6])
self.assert_partitioned(np.partition(d, 16, kind=k), [16])
self.assert_partitioned(d[np.argpartition(d, 16, kind=k)], [16])

assert_array_equal(np.partition(d, -6, kind=k),
np.partition(d, 41, kind=k))
assert_array_equal(np.partition(d, -16, kind=k),
np.partition(d, 31, kind=k))
assert_array_equal(d[np.argpartition(d, -6, kind=k)],
np.partition(d, 41, kind=k))
self.assert_partitioned(np.partition(d, 41, kind=k), [41])
self.assert_partitioned(d[np.argpartition(d, -6, kind=k)], [41])

# median of 3 killer, O(n^2) on pure median 3 pivot quickselect
# exercises the median of median of 5 code used to keep O(n)
Expand Down Expand Up @@ -2900,10 +2900,10 @@ def test_partition(self):
np.random.shuffle(d)
for i in range(d.size):
assert_equal(np.partition(d, i, kind=k)[i], tgt[i])
assert_array_equal(d[np.argpartition(d, 6, kind=k)],
np.partition(d, 6, kind=k))
assert_array_equal(d[np.argpartition(d, 16, kind=k)],
np.partition(d, 16, kind=k))
self.assert_partitioned(np.partition(d, 6, kind=k), [6])
self.assert_partitioned(d[np.argpartition(d, 6, kind=k)], [6])
self.assert_partitioned(np.partition(d, 16, kind=k), [16])
self.assert_partitioned(d[np.argpartition(d, 16, kind=k)], [16])
for i in range(d.size):
d[i:].partition(0, kind=k)
assert_array_equal(d, tgt)
Expand Down Expand Up @@ -2965,27 +2965,32 @@ def test_partition(self):
assert_array_less(p[:i], p[i])
# all after are larger
assert_array_less(p[i], p[i + 1:])
aae(p, d[np.argpartition(d, i, kind=k)])
self.assert_partitioned(p, [i])
self.assert_partitioned(d[np.argpartition(d, i, kind=k)], [i])

p = np.partition(d1, i, axis=1, kind=k)
parg = d1[np.arange(d1.shape[0])[:, None], np.argpartition(d1, i, axis=1, kind=k)]
aae(p[:, i], np.array([i] * d1.shape[0], dtype=dt))
# array_less does not seem to work right
at((p[:, :i].T <= p[:, i]).all(),
msg="%d: %r <= %r" % (i, p[:, i], p[:, :i].T))
at((p[:, i + 1:].T > p[:, i]).all(),
msg="%d: %r < %r" % (i, p[:, i], p[:, i + 1:].T))
aae(p, d1[np.arange(d1.shape[0])[:, None],
np.argpartition(d1, i, axis=1, kind=k)])
for row in range(p.shape[0]):
self.assert_partitioned(p[row], [i])
self.assert_partitioned(parg[row], [i])

p = np.partition(d0, i, axis=0, kind=k)
parg = d0[np.argpartition(d0, i, axis=0, kind=k), np.arange(d0.shape[1])[None, :]]
aae(p[i, :], np.array([i] * d1.shape[0], dtype=dt))
# array_less does not seem to work right
at((p[:i, :] <= p[i, :]).all(),
msg="%d: %r <= %r" % (i, p[i, :], p[:i, :]))
at((p[i + 1:, :] > p[i, :]).all(),
msg="%d: %r < %r" % (i, p[i, :], p[:, i + 1:]))
aae(p, d0[np.argpartition(d0, i, axis=0, kind=k),
np.arange(d0.shape[1])[None, :]])
for col in range(p.shape[1]):
self.assert_partitioned(p[:,col], [i])
self.assert_partitioned(parg[:,col], [i])

# check inplace
dc = d.copy()
Expand All @@ -3001,9 +3006,9 @@ def test_partition(self):
def assert_partitioned(self, d, kth):
prev = 0
for k in np.sort(kth):
assert_array_less(d[prev:k], d[k], err_msg='kth %d' % k)
assert_array_compare(operator.__le__, d[prev:k], d[k], err_msg='kth %d' % k)
assert_((d[k:] >= d[k]).all(),
msg="kth %d, %r not greater equal %d" % (k, d[k:], d[k]))
msg="kth %d, %r not greater equal %r" % (k, d[k:], d[k]))
prev = k + 1

def test_partition_iterative(self):
Expand Down
0