8000 BUG: random: Fix generation of nan by dirichlet. by charris · Pull Request #24338 · numpy/numpy · GitHub
[go: up one dir, main page]

Skip to content

BUG: random: Fix generation of nan by dirichlet. #24338

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 18 additions & 11 deletions 8000 numpy/random/_generator.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -4408,6 +4408,7 @@ cdef class Generator:
np.NPY_ARRAY_ALIGNED | np.NPY_ARRAY_C_CONTIGUOUS)
if np.any(np.less(alpha_arr, 0)):
raise ValueError('alpha < 0')

alpha_data = <double*>np.PyArray_DATA(alpha_arr)

if size is None:
Expand Down Expand Up @@ -4467,17 +4468,23 @@ cdef class Generator:
csum += alpha_data[j]
alpha_csum_data[j] = csum

with self.lock, nogil:
while i < totsize:
acc = 1.
for j in range(k - 1):
v = random_beta(&self._bitgen, alpha_data[j],
alpha_csum_data[j + 1])
val_data[i + j] = acc * v
acc *= (1. - v)
val_data[i + k - 1] = acc
i = i + k

# If csum == 0, then all the values in alpha are 0, and there is
# nothing to do, because diric was created with np.zeros().
if csum > 0:
with self.lock, nogil:
while i < totsize:
acc = 1.
for j in range(k - 1):
v = random_beta(&self._bitgen, alpha_data[j],
alpha_csum_data[j + 1])
val_data[i + j] = acc * v
acc *= (1. - v)
if alpha_csum_data[j + 1] == 0:
# v must be 1, so acc is now 0. All
# remaining elements will be left at 0.
break
val_data[i + k - 1] = acc
i = i + k
else:
# Standard case: Unit normalisation of a vector of gamma random
# variates
Expand Down
24 changes: 22 additions & 2 deletions numpy/random/tests/test_generator_mt19937.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@
},
]


@pytest.fixture(scope='module', params=[True, False])
def endpoint(request):
return request.param
Expand Down Expand Up @@ -145,6 +146,7 @@ def test_multinomial_pvals_float32(self):
with pytest.raises(ValueError, match=match):
random.multinomial(1, pvals)


class TestMultivariateHypergeometric:

def setup_method(self):
Expand Down Expand Up @@ -1238,6 +1240,25 @@ def test_dirichlet_moderately_small_alpha(self):
sample_mean = sample.mean(axis=0)
assert_allclose(sample_mean, exact_mean, rtol=1e-3)

# This set of parameters includes inputs with alpha.max() >= 0.1 and
# alpha.max() < 0.1 to exercise both generation methods within the
# dirichlet code.
@pytest.mark.parametrize(
'alpha',
[[5, 9, 0, 8],
[0.5, 0, 0, 0],
[1, 5, 0, 0, 1.5, 0, 0, 0],
[0.01, 0.03, 0, 0.005],
[1e-5, 0, 0, 0],
[0.002, 0.015, 0, 0, 0.04, 0, 0, 0],
[0.0],
[0, 0, 0]],
)
def test_dirichlet_multiple_zeros_in_alpha(self, alpha):
alpha = np.array(alpha)
y = random.dirichlet(alpha)
assert_equal(y[alpha == 0], 0.0)

def test_exponential(self):
random = Generator(MT19937(self.seed))
actual = random.exponential(1.1234, size=(3, 2))
Expand Down Expand Up @@ -1467,7 +1488,7 @@ def test_multivariate_normal(self, method):
mu, np.empty((3, 2)))
assert_raises(ValueError, random.multivariate_normal,
mu, np.eye(3))

@pytest.mark.parametrize('mean, cov', [([0], [[1+1j]]), ([0j], [[1]])])
def test_multivariate_normal_disallow_complex(self, mean, cov):
random = Generator(MT19937(self.seed))
Expand Down Expand Up @@ -1847,7 +1868,6 @@ class TestBroadcast:
def setup_method(self):
self.seed = 123456789


def test_uniform(self):
random = Generator(MT19937(self.seed))
low = [0]
Expand Down
5 changes: 1 addition & 4 deletions numpy/random/tests/test_randomstate.py
Original file line number Diff line number Diff line change
Expand Up @@ -812,10 +812,6 @@ def test_dirichlet_bad_alpha(self):
alpha = np.array([5.4e-01, -1.0e-16])
assert_raises(ValueError, random.dirichlet, alpha)

def test_dirichlet_zero_alpha(self):
y = random.default_rng().dirichlet([5, 9, 0, 8])
assert_equal(y[2], 0)

def test_dirichlet_alpha_non_contiguous(self):
a = np.array([51.72840233779265162, -1.0, 39.74494232180943953])
alpha = a[::2]
Expand Down Expand Up @@ -2061,6 +2057,7 @@ def test_randomstate_ctor_old_style_pickle():
assert_equal(state_a['has_gauss'], state_b['has_gauss'])
assert_equal(state_a['gauss'], state_b['gauss'])


def test_hot_swap(restore_singleton_bitgen):
# GH 21808
def_bg = np.random.default_rng(0)
Expand Down
0