8000 Fix radar chart example by tonysyu · Pull Request #637 · matplotlib/matplotlib · GitHub
[go: up one dir, main page]

Skip to content

Fix radar chart example #637

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 3 commits into from
Closed
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
Fix radar_chart example.
Radar chart broken when using polygon spines. This was broken when the drawing of the axes spines was separated from the axes patch.
  • Loading branch information
tonysyu committed Dec 24, 2011
commit 77a3c385e39aa736d264e7e76b0fa17f554340da
205 changes: 118 additions & 87 deletions examples/api/radar_chart.py
Original file line number Diff line number Diff line change
@@ -1,77 +1,104 @@
import numpy as np

import matplotlib.pyplot as plt
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection
from matplotlib.path import Path
from matplotlib.spines import Spine
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection

def radar_factory(num_vars, frame='circle'):
"""Create a radar chart with `num_vars` axes."""
# calculate evenly-spaced axis angles
theta = 2*np.pi * np.linspace(0, 1-1./num_vars, num_vars)
# rotate theta such that the first axis is at the top
theta += np.pi/2

def draw_poly_frame(self, x0, y0, r):
def radar_factory(num_vars, frame='circle'):
"""Create a radar chart with `num_vars` axes."""
# calculate evenly-spaced axis angles
theta = 2*np.pi * np.linspace(0, 1-1./num_vars, num_vars)
# rotate theta such that the first axis is at the top
theta += np.pi/2

def poly_verts(x0, y0, r):
# TODO: use transforms to convert (x, y) to (r, theta)
verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta]
return plt.Polygon(verts, closed=True, edgecolor='k')

def draw_circle_frame(self, x0, y0, r):
return plt.Circle((x0, y0), r)

frame_dict = {'polygon': draw_poly_frame, 'circle': draw_circle_frame}
if frame not in frame_dict:
raise ValueError, 'unknown value for `frame`: %s' % frame

class RadarAxes(PolarAxes):
"""Class for creating a radar chart (a.k.a. a spider or star chart)

http://en.wikipedia.org/wiki/Radar_chart
"""
name = 'radar'
# use 1 line segment to connect specified points
RESOLUTION = 1
# define draw_frame method
draw_frame = frame_dict[frame]

def fill(self, *args, **kwargs):
"""Override fill so that line is closed by default"""
closed = kwargs.pop('closed', True)
return super(RadarAxes, self).fill(closed=closed, *args, **kwargs)

def plot(self, *args, **kwargs):
"""Override plot so that line is closed by default"""
lines = super(RadarAxes, self).plot(*args, **kwargs)
for line in lines:
self._close_line(line)

def _close_line(self, line):
x, y = line.get_data()
# FIXME: markers at x[0], y[0] get doubled-up
if x[0] != x[-1]:
x = np.concatenate((x, [x[0]]))
y = np.concatenate((y, [y[0]]))
line.set_data(x, y)

def set_varlabels(self, labels):
self.set_thetagrids(theta * 180/np.pi, labels)

def _gen_axes_patch(self):
x0, y0 = (0.5, 0.5)
r = 0.5
verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta]
return verts

def draw_poly_frame(self, x0, y0, r):
verts = poly_verts(x0, y0, r)
return plt.Polygon(verts, closed=True, edgecolor='k')

def draw_circle_frame(self, x0, y0, r):
return plt.Circle((x0, y0), r)

frame_dict = {'polygon': draw_poly_frame, 'circle': draw_circle_frame}
if frame not in frame_dict:
raise ValueError, 'unknown value for `frame`: %s' % frame

class RadarAxes(PolarAxes):
"""Class for creating a radar chart (a.k.a. a spider or star chart)

http://en.wikipedia.org/wiki/Radar_chart
"""
name = 'radar'
# use 1 line segment to connect specified points
RESOLUTION = 1
# define draw_frame method
draw_frame = frame_dict[frame]

def fill(self, *args, **kwargs):
"""Override fill so that line is closed by default"""
closed = kwargs.pop('closed', True)
return super(RadarAxes, self).fill(closed=closed, *args, **kwargs)

def plot(self, *args, **kwargs):
"""Override plot so that line is closed by default"""
lines = super(RadarAxes, self).plot(*args, **kwargs)
for line in lines:
self._close_line(line)

def _close_line(self, line):
x, y = line.get_data()
# FIXME: markers at x[0], y[0] get doubled-up
if x[0] != x[-1]:
x = np.concatenate((x, [x[0]]))
y = np.concatenate((y, [y[0]]))
line.set_data(x, y)

def set_varlabels(self, labels):
self.set_thetagrids(theta * 180/np.pi, labels)

def _gen_axes_patch(self):
x0, y0 = (0.5, 0.5)
r = 0.5
return self.draw_frame(x0, y0, r)

register_projection(RadarAxes)
return theta

def _gen_axes_spines(self):
if frame == 'circle':
return PolarAxes._gen_axes_spines(self)
# The following is a hack to get the spines (i.e. the axes frame)
# to draw correctly for a polygon frame.

# spine_type must be 'left', 'right', 'top', 'bottom', or `circle`.
spine_type = 'circle'
r = 0.5
x0, y0 = (0.5, 0.5)
#verts = [(t, r) for t in theta]
verts = poly_verts(x0, y0, r)
# close off polygon by repeating first vertex
verts.append(verts[0])
path = Path(verts)

spine = Spine(self, spine_type, path)
spine.set_transform(self.transAxes)
return {'polar': spine}

register_projection(RadarAxes)
return theta


if __name__ == '__main__':
#The following data is from the Denver Aerosol Sources and Health study.
#See doi:10.1016/j.atmosenv.2008.12.017
if __name__ == '__main__':
#The following data is from the Denver Aerosol Sources and Health study.
#See doi:10.1016/j.atmosenv.2008.12.017
#
#The data are pollution source profile estimates for five modeled pollution
#sources (e.g., cars, wood-burning, etc) that emit 7-9 chemical species.
#The radar charts are experimented with here to see if we can nicely
#The radar charts are experimented with here to see if we can nicely
#visualize how the modeled source profiles change across four scenarios:
# 1) No gas-phase species present, just seven particulate counts on
# Sulfate
Expand All @@ -81,64 +108,68 @@ def _gen_axes_patch(self):
# Organic Carbon fraction 2 (OC2)
# Organic Carbon fraction 3 (OC3)
# Pyrolized Organic Carbon (OP)
# 2)Inclusion of gas-phase specie carbon monoxide (CO)
# 3)Inclusion of gas-phase specie ozone (O3).
# 2)Inclusion of gas-phase specie carbon monoxide (CO)
# 3)Inclusion of gas-phase specie ozone (O3).
# 4)Inclusion of both gas-phase speciesis present...
N = 9
theta = radar_factory(N)
spoke_labels = ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO',
theta = radar_factory(N, frame='polygon')
spoke_labels = ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO',
'O3']
f1_base = [0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00]
f1_CO = [0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00]
f1_O3 = [0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03]
f1_both = [0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01]
f1_CO = [0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00]
f1_O3 = [0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03]
f1_both = [0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01]

f2_base = [0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00]
f2_CO = [0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00]
f2_O3 = [0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00]
f2_both = [0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00]
f2_CO = [0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00]
f2_O3 = [0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00]
f2_both = [0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00]

f3_base = [0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00]
f3_CO = [0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00]
f3_O3 = [0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00]
f3_both = [0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00]
f3_CO = [0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00]
f3_O3 = [0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00]
f3_both = [0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00]

f4_base = [0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00]
f4_CO = [0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00]
f4_O3 = [0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95]
f4_both = [0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88]
f4_CO = [0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00]
f4_O3 = [0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95]
f4_both = [0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88]

f5_base = [0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]
f5_CO = [0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]
f5_O3 = [0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]
f5_both = [0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]
f5_CO = [0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]
f5_O3 = [0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]
f5_both = [0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]

fig = plt.figure(figsize=(9,9))
# adjust spacing around the subplots
fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)
title_list = ['Basecase', 'With CO', 'With O3', 'CO & O3']
data = {'Basecase': [f1_base, f2_base, f3_base, f4_base, f5_base],
'With CO': [f1_CO, f2_CO, f3_CO, f4_CO, f5_CO],
'With O3': [f1_O3, f2_O3, f3_O3, f4_O3, f5_O3],
'With O3': [f1_O3, f2_O3, f3_O3, f4_O3, f5_O3],
'CO & O3': [f1_both, f2_both, f3_both, f4_both, f5_both]}
colors = ['b', 'r', 'g', 'm', 'y']
# chemicals range from 0 to 1
radial_grid = [0.2, 0.4, 0.6, 0.8]

# If you don't care about the order, you can loop over data_dict.items()
for n, title in enumerate(title_list):
ax = fig.add_subplot(2, 2, n+1, projection='radar')
plt.rgrids(radial_grid)
ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1),
horizontalalignment='center', verticalalignment='center')
for d, color in zip(data[title], colors):
ax.plot(theta, d, color=color)
ax.fill(theta, d, facecolor=color, alpha=0.25)
ax.plot(theta, d, color=color)
ax.fill(theta, d, facecolor=color, alpha=0.25)
ax.set_varlabels(spoke_labels)

# add legend relative to top-left plot
plt.subplot(2,2,1)
labels = ('Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5')
legend = plt.legend(labels, loc=(0.9, .95), labelspacing=0.1)
plt.setp(legend.get_texts(), fontsize='small')
plt.figtext(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
ha='center', color='black', weight='bold', size='large')

plt.figtext(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
ha='center', color='black', weight='bold', size='large')
plt.show()

0