8000 DOC: Update scales overview by timhoffm · Pull Request #29406 · matplotlib/matplotlib · GitHub
[go: up one dir, main page]

Skip to content

DOC: Update scales overview #29406

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 7, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions doc/sphinxext/gallery_order.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,8 @@ def __call__(self, item):
"color_demo",
# pies
"pie_features", "pie_demo2",
# scales
"scales", # Scales overview

# **Plot Types
# Basic
Expand Down
100 changes: 29 additions & 71 deletions galleries/examples/scales/scales.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,56 +5,42 @@

Illustrate the scale transformations applied to axes, e.g. log, symlog, logit.

The last two examples are examples of using the ``'function'`` scale by
supplying forward and inverse functions for the scale transformation.
See `matplotlib.scale` for a full list of built-in scales, and
:doc:`/gallery/scales/custom_scale` for how to create your own scale.
"""

import matplotlib.pyplot as plt
import numpy as np

from matplotlib.ticker import FixedLocator, NullFormatter
x = np.arange(400)
y = np.linspace(0.002, 1, 400)

# Fixing random state for reproducibility
np.random.seed(19680801)

# make up some data in the interval ]0, 1[
y = np.random.normal(loc=0.5, scale=0.4, size=1000)
y = y[(y > 0) & (y < 1)]
y.sort()
x = np.arange(len(y))

# plot with various axes scales
fig, axs = plt.subplots(3, 2, figsize=(6, 8), layout='constrained')

# linear
ax = axs[0, 0]
ax.plot(x, y)
ax.set_yscale('linear')
ax.set_title('linear')
ax.grid(True)

axs[0, 0].plot(x, y)
axs[0, 0].set_yscale('linear')
axs[0, 0].set_title('linear')
axs[0, 0].grid(True)

# log
ax = axs[0, 1]
ax.plot(x, y)
ax.set_yscale('log')
ax.set_title('log')
ax.grid(True)
axs[0, 1].plot(x, y)
axs[0, 1].set_yscale('log')
axs[0, 1].set_title('log')
axs[0, 1].grid(True)

axs[1, 0].plot(x, y - y.mean())
axs[1, 0].set_yscale('symlog', linthresh=0.02)
axs[1, 0].set_title('symlog')
axs[1, 0].grid(True)

# symmetric log
ax = axs[1, 1]
ax.plot(x, y - y.mean())
ax.set_yscale('symlog', linthresh=0.02)
ax.set_title('symlog')
ax.grid(True)
axs[1, 1].plot(x, y)
axs[1, 1].set_yscale('logit')
axs[1, 1].set_title('logit')
axs[1, 1].grid(True)

# logit
ax = axs[1, 0]
ax.plot(x, y)
ax.set_yscale('logit')
ax.set_title('logit')
ax.grid(True)
axs[2, 0].plot(x, y - y.mean())
axs[2, 0].set_yscale('asinh', linear_width=0.01)
axs[2, 0].set_title('asinh')
axs[2, 0].grid(True)


# Function x**(1/2)
Expand All @@ -66,38 +52,11 @@ def inverse(x):
return x**2


ax = axs[2, 0]
ax.plot(x, y)
ax.set_yscale('function', functions=(forward, inverse))
ax.set_title('function: $x^{1/2}$')
ax.grid(True)
ax.yaxis.set_major_locator(FixedLocator(np.arange(0, 1, 0.2)**2))
ax.yaxis.set_major_locator(FixedLocator(np.arange(0, 1, 0.2)))


# Function Mercator transform
def forward(a):
a = np.deg2rad(a)
return np.rad2deg(np.log(np.abs(np.tan(a) + 1.0 / np.cos(a))))


def inverse(a):
a = np.deg2rad(a)
return np.rad2deg(np.arctan(np.sinh(a)))

ax = axs[2, 1]

t = np.arange(0, 170.0, 0.1)
s = t / 2.

ax.plot(t, s, '-', lw=2)

ax.set_yscale('function', functions=(forward, inverse))
ax.set_title('function: Mercator')
ax.grid(True)
ax.set_xlim([0, 180])
ax.yaxis.set_minor_formatter(NullFormatter())
ax.yaxis.set_major_locator(FixedLocator(np.arange(0, 90, 10)))
axs[2, 1].plot(x, y)
axs[2, 1].set_yscale('function', functions=(forward, inverse))
axs[2, 1].set_title('function: $x^{1/2}$')
axs[2, 1].grid(True)
axs[2, 1].set_yticks(np.arange(0, 1.2, 0.2))

plt.show()

Expand All @@ -110,7 +69,6 @@ def inverse(a):
#
# - `matplotlib.axes.Axes.set_xscale`
# - `matplotlib.axes.Axes.set_yscale`
# - `matplotlib.axis.Axis.set_major_locator`
# - `matplotlib.scale.LinearScale`
# - `matplotlib.scale.LogScale`
# - `matplotlib.scale.SymmetricalLogScale`
Expand Down
Loading
0