8000 Add new example for plotting a confidence_ellipse by CarstenSchelp · Pull Request #13570 · matplotlib/matplotlib · GitHub
[go: up one dir, main page]

Skip to content

Add new example for plotting a confidence_ellipse #13570

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 21 commits into from
Apr 2, 2019
Merged
Changes from all commits
Commits
Show all changes
21 commits
Select commit Hold shift + click to select a range
9661375
Add new example for plotting a confidence_ellipse
Mar 2, 2019
b48f97d
Merge https://github.com/matplotlib/matplotlib into confidence_ellipse
Mar 3, 2019
e74b886
Applying suggested changes: remove author and license block, make fla…
Mar 3, 2019
701e171
Put demos in multiple code boxes.
Mar 3, 2019
c845c88
Apply some improvements concerning style and conventions. First three…
Mar 3, 2019
2df575a
run flake8 checks
Mar 3, 2019
d413596
Merge https://github.com/matplotlib/matplotlib into confidence_ellipse
Mar 3, 2019
713a985
Make link to explaining article more prominent.
Mar 4, 2019
ef22b47
Have keyword argument 'facecolor' default to 'none'.
timhoffm Mar 9, 2019
49a2869
In demo-code change mu from nparray to tuple. Also removes superfluou…
timhoffm Mar 9, 2019
856b27d
Pass single values to scatter() instead of making artificial lists.
timhoffm Mar 9, 2019
ea287e0
Pass facecolor to Ellipse() explicitly because we introduced a defaul…
Mar 9, 2019
71b2b05
Merge branch 'confidence_ellipse' of https://github.com/CarstenSchelp…
Mar 9, 2019
f0e1f91
Add legend to example with multiple standard deviations.
Mar 9, 2019
47a87f8
Have ellipse plotted "over" scattered dataset using zorder=0
Mar 9, 2019
55e0f51
Merge https://github.com/matplotlib/matplotlib into confidence_ellipse
Mar 10, 2019
b7df47b
Update examples/statistics/confidence_ellipse.py
timhoffm Mar 14, 2019
31d35d3
Correct stale color specifications in heading of "different n_std" ex…
Mar 14, 2019
dbd50b3
Update examples/statistics/confidence_ellipse.py
timhoffm Mar 14, 2019
2d1fca7
Merge branch 'confidence_ellipse' of https://github.com/CarstenSchelp…
Mar 14, 2019
566b6c8
Consistency define variables mu and scale as tuples.
Mar 14, 2019
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
222 changes: 222 additions & 0 deletions examples/statistics/confidence_ellipse.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,222 @@
"""
======================================================
Plot a confidence ellipse of a two-dimensional dataset
======================================================

This example shows how to plot a confidence ellipse of a
two-dimensional dataset, using its pearson correlation coefficient.

The approach that is used to obtain the correct geometry is
explained and proved here:

https://carstenschelp.github.io/2018/09/14/Plot_Confidence_Ellipse_001.html

The method avoids the use of an iterative eigen decomposition algorithm
and makes use of the fact that a normalized covariance matrix (composed of
pearson correlation coefficients and ones) is particularly easy to handle.
"""

#############################################################################
#
# The plotting function itself
# """"""""""""""""""""""""""""
#
# This function plots the confidence ellipse of the covariance of the given
# array-like variables x and y. The ellipse is plotted into the given
# axes-object ax.
#
# The radiuses of the ellipse can be controlled by n_std which is the number
# of standard deviations. The default value is 3 which makes the ellipse
# enclose 99.7% of the points (given the data is normally distributed
# like in these examples).


import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
import matplotlib.transforms as transforms


def 10000 confidence_ellipse(x, y, ax, n_std=3.0, facecolor='none', **kwargs):
"""
Create a plot of the covariance confidence ellipse of `x` and `y`

Parameters
----------
x, y : array_like, shape (n, )
Input data.

ax : matplotlib.axes.Axes
The axes object to draw the ellipse into.

n_std : float
The number of standard deviations to determine the ellipse's radiuses.

Returns
-------
matplotlib.patches.Ellipse

Other parameters
----------------
kwargs : `~matplotlib.patches.Patch` properties
"""
if x.size != y.size:
raise ValueError("x and y must be the same size")

cov = np.cov(x, y)
pearson = cov[0, 1]/np.sqrt(cov[0, 0] * cov[1, 1])
# Using a special case to obtain the eigenvalues of this
# two-dimensionl dataset.
ell_radius_x = np.sqrt(1 + pearson)
ell_radius_y = np.sqrt(1 - pearson)
ellipse = Ellipse((0, 0),
width=ell_radius_x * 2,
height=ell_radius_y * 2,
facecolor=facecolor,
**kwargs)

# Calculating the stdandard deviation of x from
# the squareroot of the variance and multiplying
# with the given number of standard deviations.
scale_x = np.sqrt(cov[0, 0]) * n_std
mean_x = np.mean(x)

# calculating the stdandard deviation of y ...
scale_y = np.sqrt(cov[1, 1]) * n_std
mean_y = np.mean(y)

transf = transforms.Affine2D() \
.rotate_deg(45) \
.scale(scale_x, scale_y) \
.translate(mean_x, mean_y)

ellipse.set_transform(transf + ax.transData)
return ax.add_patch(ellipse)


#############################################################################
#
# A helper function to create a correlated dataset
# """"""""""""""""""""""""""""""""""""""""""""""""
#
# Creates a random two-dimesional dataset with the specified
# two-dimensional mean (mu) and dimensions (scale).
# The correlation can be controlled by the param 'dependency',
# a 2x2 matrix.

def get_correlated_dataset(n, dependency, mu, scale):
latent = np.random.randn(n, 2)
dependent = latent.dot(dependency)
scaled = dependent * scale
scaled_with_offset = scaled + mu
# return x and y of the new, correlated dataset
return scaled_with_offset[:, 0], scaled_with_offset[:, 1]


#############################################################################
#
# Positive, negative and weak correlation
# """""""""""""""""""""""""""""""""""""""
#
# Note that the shape for the weak correlation (right) is an ellipse,
# not a circle because x and y are differently scaled.
# However, the fact that x and y are uncorrelated is shown by
# the axes of the ellipse being aligned with the x- and y-axis
# of the coordinate system.

np.random.seed(0)

PARAMETERS = {
'Positive correlation': np.array([[0.85, 0.35],
[0.15, -0.65]]),
'Negative correlation': np.array([[0.9, -0.4],
[0.1, -0.6]]),
'Weak correlation': np.array([[1, 0],
[0, 1]]),
}

mu = 2, 4
scale = 3, 5

fig, axs = plt.subplots(1, 3, figsize=(9, 3))
for ax, (title, dependency) in zip(axs, PARAMETERS.items()):
x, y = get_correlated_dataset(800, dependency, mu, scale)
ax.scatter(x, y, s=0.5)

ax.axvline(c='grey', lw=1)
ax.axhline(c='grey', lw=1)

confidence_ellipse(x, y, ax, edgecolor='red')

ax.scatter(mu[0], mu[1], c='red', s=3)
ax.set_title(title)

plt.show()


#############################################################################
#
# Different number of standard deviations
# """""""""""""""""""""""""""""""""""""""
#
# A plot with n_std = 3 (blue), 2 (purple) and 1 (red)

fig, ax_nstd = plt.subplots(figsize=(6, 6))

dependency_nstd = np.array([
[0.8, 0.75],
[-0.2, 0.35]
])
mu = 0, 0
scale = 8, 5

ax_nstd.axvline(c='grey', lw=1)
ax_nstd.axhline(c='grey', lw=1)

x, y = get_correlated_dataset(500, dependency_nstd, mu, scale)
ax_nstd.scatter(x, y, s=0.5)

confidence_ellipse(x, y, ax_nstd, n_std=1,
label=r'$1\sigma$', edgecolor='firebrick')
confidence_ellipse(x, y, ax_nstd, n_std=2,
label=r'$2\sigma$', edgecolor='fuchsia', linestyle='--')
confidence_ellipse(x, y, ax_nstd, n_std=3,
label=r'$3\sigma$', edgecolor='blue', linestyle=':')

ax_nstd.scatter(mu[0], mu[1], c='red', s=3)
ax_nstd.set_title('Different standard deviations')
ax_nstd.legend()
plt.show()


#############################################################################
#
# Using the keyword arguments
# """""""""""""""""""""""""""
#
# Use the kwargs specified for matplotlib.patches.Patch in order
# to have the ellipse rendered in different ways.

fig, ax_kwargs = plt.subplots(figsize=(6, 6))
dependency_kwargs = np.array([
[-0.8, 0.5],
[-0.2, 0.5]
])
mu = 2, -3
scale = 6, 5

ax_kwargs.axvline(c='grey', lw=1)
ax_kwargs.axhline(c='grey', lw=1)

x, y = get_correlated_dataset(500, dependency_kwargs, mu, scale)
# Plot the ellipse with zorder=0 in order to demonstrate
# its transparency (caused by the use of alpha).
confidence_ellipse(x, y, ax_kwargs,
alpha=0.5, facecolor='pink', edgecolor='purple', zorder=0)

ax_kwargs.scatter(x, y, s=0.5)
ax_kwargs.scatter(mu[0], mu[1], c='red', s=3)
ax_kwargs.set_title(f'Using kwargs')

fig.subplots_adjust(hspace=0.25)
plt.show()
0