8000 DOC: Tiny fixes, and possible overhaul, of the two scales example in the gallery by afvincent · Pull Request #10320 · matplotlib/matplotlib · GitHub
[go: up one dir, main page]

Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 16 additions & 55 deletions examples/api/two_scales.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,64 +17,25 @@
import numpy as np
import matplotlib.pyplot as plt


def two_scales(ax1, time, data1, data2, c1, c2):
"""

Parameters
----------
ax : axis
Axis to put two scales on

time : array-like
x-axis values for both datasets

data1: array-like
Data for left hand scale

data2 : array-like
Data for right hand scale

c1 : color
Color for line 1

c2 : color
Color for line 2

Returns
-------
ax : axis
Original axis
ax2 : axis
New twin axis
"""
ax2 = ax1.twinx()

ax1.plot(time, data1, color=c1)
ax1.set_xlabel('time (s)')
ax1.set_ylabel('exp')

ax2.plot(time, data2, color=c2)
ax2.set_ylabel('sin')
return ax1, ax2


# Create some mock data
t = np.arange(0.01, 10.0, 0.01)
s1 = np.exp(t)
s2 = np.sin(2 * np.pi * t)
data1 = np.exp(t)
data2 = np.sin(2 * np.pi * t)

fig, ax1 = plt.subplots()

color = 'tab:red'
ax1.set_xlabel('time (s)')
ax1.set_ylabel('exp', color=color)
ax1.plot(t, data1, color=color)
ax1.tick_params(axis='y', labelcolor=color)

# Create axes
fig, ax = plt.subplots()
ax1, ax2 = two_scales(ax, t, s1, s2, 'r', 'b')
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis

color = 'tab:blue'
ax2.set_ylabel('sin', color=color) # we already handled the x-label with ax1
ax2.plot(t, data2, color=color)
ax2.tick_params(axis='y', labelcolor=color)

# Change color of each axis
def color_y_axis(ax, color):
"""Color your axes."""
for t in ax.get_yticklabels():
t.set_color(color)
return None
color_y_axis(ax1, 'r')
color_y_axis(ax2, 'b')
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.show()
0