-
Notifications
You must be signed in to change notification settings - Fork 54
Darwinbuild is a collection of tools that assist compilation of the many projects contained in Darwin, the open source base of Apple's macOS operating system.
License
macosforge/darwinbuild
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Darwinbuild Updated 2009-02-17 Kevin Van Vechten <kvv@apple.com> William Siegrist <wsiegrist@apple.com> 1. Overview 1.1 Availability, Bug Reports, Contributions, and Discussion 2. Installation 2.1 Creating the Build Directory 3. Building Darwin Projects (darwinbuild) 3.1 Install Headers 3.2 Chroot Builds 4. Build Environment Variables 4.1 Build Aliases and Alternate Targets 5. Tips and Techniques 5.1 Private Headers 5.2 Build Tools 5.3 Static Libraries 5.4 Alternate BuildRoot Storage Appendix A. darwinxref =========== 1. Overview =========== Darwinbuild is a collection of tools that assist compilation of the many projects contained in Darwin[1], the open source base of Apple's Mac OS X operating system[2]. Apple publishes the sources of these projects in an archive format (.tar.gz). An archive is published for each project version on Apple's site[3]. These tools will provide the proper build environment as well as help to resolve any necessary dependencies prior to building. [1] <http://developer.apple.com/darwin/> [2] <http://www.apple.com/macosx/> [3] <http://www.opensource.apple.com/> 1.1 Availability, Bug Reports, Contributions, and Discussion Due to the constant development of darwinbuild, the only version you should be working with is trunk of the subversion repository[1]. Trunk should always be stable enough for building projects. If you find a problem or have a enhancement in mind, file a ticket at the website[2]. Discussion about darwinbuild, or building Darwin projects in general, should take place on the darwinbuild-dev[3] mailing list. [1] <http://svn.macosforge.org/repository/darwinbuild/trunk> [2] <http://darwinbuild.macosforge.org/report/1> [3] <http://lists.macosforge.org/mailman/listinfo/darwinbuild-dev> =============== 2. Installation =============== You can install the latest version of darwinbuild using MacPorts. % port install darwinbuild Or, you can also install by checking out the source and building darwinbuild yourself. The included Xcode project will compile the tools and install them into the location specified by the PREFIX environment parameter. If the PREFIX parameter is not specified, the files will be installed into /usr/local. By default, darwinbuild will build for x86_64 and i386. You can override this with the ARCHS environment variable. However, building trunk for ppc is not supported since trunk is targeted for Darwin 10. The release branches for Darwin 8 and 9 do support building for ppc. To build and install darwinbuild to the boot partition: % cd <path to top of source> % sudo xcodebuild install DSTROOT=/ 2.1 Creating the Build Directory After installation, you must initialize the build directory using darwinbuild. Assuming you wanted to build projects from 9G55 in your home directory: # mkdir ~/9G55 # cd ~/9G55 # sudo -s # darwinbuild -init 9G55 Creating build root disk image ... Attempting to download http://svn.macosforge.org/repository/darwinbuild/trunk/plists//9G55.plist ... Download complete Attempting to download http://svn.macosforge.org/repository/darwinbuild/trunk/plists//9F33.plist ... Download complete ... Attempting to download http://svn.macosforge.org/repository/darwinbuild/trunk/plists//9A581.plist ... Download complete Initialization Complete # ls .build Headers Logs Roots Sources Symbols After initialization, the build directory will contain the following: .build contains private data for the darwinbuild system Headers contains the resulting header files from previous builds Logs contains logs of previous build attempts Roots contains the finished products of previous successful builds Sources contains sources downloaded from the web Symbols contains debug symbol versions of previous build products When using the darwinbuild command, it is necessary that the current working directory be this build directory, or alternatively, that the DARWIN_BUILDROOT environment variable be set to the absolute path of the destination directory. The example usages in this document assume the current working directory is this build directory. ========================================= 3. Building Darwin Projects (darwinbuild) ========================================= To build a Darwin project, for example xnu, the darwinbuild script can be used in the following manner: # darwinbuild xnu The darwinxref tool is consulted to find the version that corresponds to the build specified when the build directory was initialized. It is necessary to run the darwinbuild tool as root so that projects can set the proper ownership and permissions on the build results. darwinbuild first looks in the Sources directory for a directory containing the sources to be built (Sources/xnu-517.11.1), or a .tar.gz archive containing the sources (Sources/xnu-517.11.1.tar.gz). If neither is found, darwinbuild will attempt to download the sources from the web. If it does not already exist, a BuildRoot directory will be created. This is where the build will actually take place. During the build, darwinbuild will change the root directory to BuildRoot (see the chroot(8) man page for details). Darwinbuild is capable of copying the required tools, libraries and headers from the Roots directory into the BuildRoot prior to building. If a necessary dependency is not found in the Roots directory, it will be downloaded from the web. The build output will be written to the console, and additionally logged into a file in the Logs directory. The above example produces the following file: Logs/xnu/xnu-517.11.1.log~1 The ~1 indicates that this log file corresponds to the first attempt to build xnu version 517.11.1. Each subsequent attempt will add one to this build number. If the build succeeds, the finished product will be copied out of the BuildRoot directory and into the Roots directory: Roots/xnu/xnu-517.11.1.root~1 After the copy, darwinbuild traverses the directory and records all files found in the darwinxref database. This makes it possible to query which project a file is produced by. When a Mach-O executable, library, or bundle is found during the traversal, the dynamic library load commands are recorded in the darwinxref database. This makes it possible to query which additional projects are required to run an executable produced by the project. Additionally, any products containing debug symbols will be placed into the Symbols directory. 3.1 Install Headers Passing the -headers flag to darwinbuild will start an alternative build style where only the project's headers are produced. This is useful for working around various circular dependencies while compiling low level projects like xnu, cctools, Libc, etc. The results of a -headers build are placed in the Headers directory, in the same style as the Roots directory for a regular build. For example: % sudo darwinbuild -headers IOKitUser % ls Headers/IOKitUser/IOKitUser-184.hdrs~1 3.3 Logging Dependencies Passing the -logdeps flag to darwinbuild will build the specified project while recording the paths of all files openened and all executables invoked. These paths are written into the Logs directory, and if the build is successful, will be imported into the darwinxref database. ============================== 4. Build Environment Variables ============================== At the minimum, the build environment consists of the creation of SRCROOT, OBJROOT, SYMROOT, and DSTROOT environment variables. These variables contain an absolute path to a directory which must exist prior to invoking the Makefile. User configurable environment variables, such as the target architecture, can be set in the build plist file that is loaded via loadIndex. The darwinbuild script creates the aforementioned directories, sets the environment variables, and issues the appropriate make command. Within the plist file, the RC_ARCHS variable indicates which target architectures should be included in the build. Currently only ppc and i386 are available. For each architecture in RC_ARCHS, and equivalent RC_{arch} should be set to YES (i.e. RC_ARCHS="ppc" RC_ppc=YES). The RC_NONARCH_CFLAGS specify additional command line flags to be passed to the C compiler during the build. On Darwin, the -no-cpp-precomp flag should be passed since cpp-precomp is not available. During the build, the RC_ARCHS and RC_NONARCH_CFLAGS variables will be combined to create the RC_ARCHS environment variable; a -arch flag will be appended for each architecture listed in RC_ARCHS. The MACOSX_DEPLOYMENT_TARGET variable should match the major Mac OS X release that is being targeted, such as 10.2 or 10.3. 4.1 Build Aliases and Alternate Targets Some projects may produce different results based on the contents of the RC_ProjectName variable. When the same source archive is used to create more than one component of Darwin, it's referred to as a build alias. Because of this, it is important to always provide accurrate project name and version information in the environment. By default, darwinbuild sets these variables appropriately. By default, "install" (for non-headers builds) is the first argument passed to the make tool (gnumake or xcodebuild). However, some projects produce different results based on alternate targets. If the project in the property list contains a "target" attribute, that string will be passed instead. ====================== 5. Tips and Techniques ====================== 5.1 Private Headers Many open source header files are not present in a standard Mac OS X install. These "private headers" are not needed by application developers, and are not part of any SDK officially supported by Apple. However, Darwin projects are part of the operating system itself and these headers are required. The darwinbuildheaders command uses the darwinxref tool and darwinbuild -headers commands to produce all header files for a given darwin release. % bin/darwinbuildheaders The resulting header files from each project are placed into the Headers directory. The headers can be subsequently installed into the BuildRoot directory using the installheaders command. % bin/installheaders By modifying the build plist file, it is possible to include these headers instead of the default system headers, giving more accurate build results and avoiding failures. Edit the RC_NONARCH_CFLAGS variable to provide the following include paths to gcc (substituting the actual installation directory). -I/usr/local/darwinbuild/BuildRoot/usr/include -I/usr/local/darwinbuild/BuildRoot/usr/local/include 5.2 Build Tools In addition to private headers, there are numerous command line tools which are used exclusively to build Darwin projects. These tools are placed in /usr/local/bin. For example, building xnu requires kextsymboltool, relpath, and decomment. 5.3 Static Libraries Several projects require static libraries from other projects. These libraries are usually placed in /usr/local/lib/system. The most notable examples are xnu's usage of libkld.a which is produced by cctools_ofiles, and Libsystem's use of many static libraries from Libc, Libinfo, and more. 5.4 Alternate BuildRoot Storage By default, "darwinbuild -init" will setup your environment to use a HFSX sparsebundle to host your BuildRoot. A sparsebundle is used to work around problems with using xcodebuild inside of a chroot. There are two other storage methods to choose from: NFS Loopback and Legacy Directory. 1. NFS Loopback (ex: darwinbuild -init 9G55 -nfs) The NFS loopback method places a directory under .build and adds that directory to /etc/exports. When you try to build a project, darwinbuild will mount the NFS export on localhost. The NFS mount also works around the xcodebuild problems. 2. Legacy Directory (ex: darwinbuild -init 9G55 -nodmg) This is just the way darwinbuild worked before the sparsebundle and NFS support was added. It just makes a directory for BuildRoot and builds on whatever filesystem you are on at the time. If you are on HFS or ZFS, this storage will cause problems for Xcode-based projects. ============= A. darwinxref ============= The darwinxref tool allows you to query which source version of a Darwin project is present in a particular Mac OS X build. It also stores information about what dependencies a particular project has, and what files the project produces. As each Mac OS X release is made available, Apple publishes a property list file containing the project names and versions in that release. These property lists are read by the darwinxref tool to seed its internal database. Property lists are available via Subversion[1]. The darwinxref tool uses SQLite[2] to maintain its database of projects, versions, files and dependencies. This distribution includes a pre-built version of the sqlite library in the file libsqlite3.a, and its associated header file, sqlite3.h. [1] <http://svn.macosforge.org/repository/darwinbuild/trunk/plists> [2] <http://www.sqlite.org/> An example of downloading, installing, and querying a property list: % curl http://svn.macosforge.org/repository/darwinbuild/trunk/plists/7U16.plist > \ plists/7U16.plist % bin/darwinxref loadIndex plists/7U16.plist 268 of 268 projects loaded. % bin/darwinxref -b 7U16 version xnu xnu-517.11.1 To list all projects in a build, use the special project name '*': % bin/darwinxref -b 7U16 version '*' To register the results of a previous build with the database use the register command. Note this is done automatically by darwinbuild: % bin/darwinxref register adv_cmds 63 Roots/adv_cmds/adv_cmds-63.root~1 /bin /bin/ps /bin/stty ... To find which project produces the 'whois' command by searching the list of previously registered files: % bin/darwinxref findFile whois adv_cmds-63: /usr/bin/whois
About
Darwinbuild is a collection of tools that assist compilation of the many projects contained in Darwin, the open source base of Apple's macOS operating system.
Resources
License
Stars
Watchers
Forks
Packages 0
No packages published