8000 GitHub - juspay/yama
[go: up one dir, main page]

Skip to content

juspay/yama

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

30 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

βš”οΈ Yama - AI-Native Code Review Guardian

Enterprise-grade autonomous code review powered by AI and MCP tools

Version License TypeScript

Named after the Hindu deity of justice and death, Yama judges code quality and ensures only the worthy changes pass through.

What's New in V2?

Yama V2 represents a complete architectural shift from coded orchestration to AI-native autonomous orchestration:

Aspect V1 V2
Architecture Coded orchestration AI autonomous orchestration
Bitbucket Integration Direct handler imports External MCP server
Context Strategy Pre-fetch everything Lazy load on-demand
AI Role Static analyzer Autonomous agent with tools
Decision Making TypeScript code AI decides
Tool Access None All operations via MCP
File Analysis All at once in prompt File-by-file AI loop
Jira Integration None MCP tools for requirements
Comment Posting Batch after analysis Real-time as found
PR Blocking Manual logic AI decision based on criteria

Architecture Overview

YamaV2Orchestrator
    ↓
NeuroLink AI Agent (Autonomous)
    ↓
MCP Tools (Bitbucket + Jira)
    ↓
Pull Request Operations

AI Autonomous Workflow

  1. Context Gathering (AI-driven)

    • Reads PR details
    • Finds and reads Jira ticket
    • Loads project standards from memory-bank
    • Reads .clinerules for review guidelines
  2. File-by-File Analysis (AI-driven)

    • Reads each file diff individually
    • Searches code for context when needed
    • Reads reference files to understand patterns
    • Comments on issues immediately
  3. PR Description Enhancement (AI-driven)

    • Analyzes changes and requirements
    • Generates comprehensive description
    • Updates PR with enhanced content
  4. Final Decision (AI-driven)

    • Evaluates all findings
    • Applies blocking criteria
    • Approves or blocks PR

Installation & Setup

1. Prerequisites

# Node.js 18+ required
node --version

# Install Yama V2
npm install @juspay/yama@2.0.0

2. Environment Variables

Create a .env file:

# Bitbucket
BITBUCKET_USERNAME=your.email@company.com
BITBUCKET_APP_PASSWORD=your-http-access-token
BITBUCKET_BASE_URL=https://bitbucket.yourcompany.com

# Jira (optional)
JIRA_EMAIL=your-email@company.com
JIRA_API_TOKEN=your-jira-api-token
JIRA_BASE_URL=https://yourcompany.atlassian.net

# AI Provider (optional - defaults to auto)
AI_PROVIDER=google-ai
AI_MODEL=gemini-2.5-pro

# Langfuse Observability (optional)
LANGFUSE_PUBLIC_KEY=your-public-key
LANGFUSE_SECRET_KEY=your-secret-key
LANGFUSE_BASE_URL=https://cloud.langfuse.com

3. Initialize Configuration

# Create default config
npx yama init

# Or copy example
cp yama.config.example.yaml yama.config.yaml

# Edit configuration
vim yama.config.yaml

4. Verify Setup

# Test initialization
npx yama review --help

Usage

Basic Review

# Review by PR ID
npx yama review \
  --workspace YOUR_WORKSPACE \
  --repository my-repo \
  --pr 123

# Review by branch
npx yama review \
  --workspace YOUR_WORKSPACE \
  --repository my-repo \
  --branch feature/new-feature

Dry Run Mode

# Test without posting comments
npx yama review \
  --workspace YOUR_WORKSPACE \
  --repository my-repo \
  --pr 123 \
  --dry-run

Enhance Description Only

npx yama enhance \
  --workspace YOUR_WORKSPACE \
  --repository my-repo \
  --pr 123

Programmatic Usage

import { createYamaV2 } from "@juspay/yama";

const yama = createYamaV2();

await yama.initialize();

const result = await yama.startReview({
  workspace: "YOUR_WORKSPACE",
  repository: "my-repo",
  pullRequestId: 123,
  dryRun: false,
});

console.log("Decision:", result.decision);
console.log("Issues:", result.statistics.issuesFound);

Configuration

Basic Configuration

version: 2
configType: "yama-v2"

ai:
  provider: "auto"
  model: "gemini-2.5-pro"
  temperature: 0.2

mcpServers:
  jira:
    enabled: true

review:
  enabled: true
  focusAreas:
    - name: "Security Analysis"
      priority: "CRITICAL"
    - name: "Performance Review"
      priority: "MAJOR"

Advanced Configuration

See yama.config.example.yaml for complete configuration options.

Project-Specific Standards

Create custom review standards for your repository:

mkdir -p memory-bank

Create memory-bank/coding-standards.md:

# Project-Specific Review Standards

## Critical Security Rules

1. ALL payment data MUST be encrypted
2. NO credit card numbers in logs
3. ALL database queries MUST use parameterized statements

## Performance Requirements

- API response time: < 200ms p95
- Database queries: < 50ms p95

Yama V2 AI will automatically read and apply these standards.

AI Autonomous Features

Lazy Context Loading

AI reads only what it needs:

  • Sees unfamiliar function? β†’ search_code("functionName")
  • Needs to understand import? β†’ get_file_content("path/to/file.ts")
  • Confused about structure? β†’ list_directory_content("src/")

Real-Time Feedback

AI comments as it finds issues:

  • No batching - immediate feedback
  • Severity-based emojis (πŸ”’ CRITICAL, ⚠️ MAJOR, πŸ’‘ MINOR, πŸ’¬ SUGGESTION)
  • Actionable suggestions with code examples

Requirement Alignment

AI reads Jira tickets:

  • Extracts acceptance criteria
  • Verifies implementation matches requirements
  • Calculates requirement coverage
  • Blocks PR if coverage < 70%

Code Context Understanding

AI uses tools to understand code:

  • search_code() - Find function definitions
  • get_file_content() - Read related files
  • list_directory_content() - Explore structure

Blocking Criteria

AI applies these criteria automatically:

  1. ANY CRITICAL issue β†’ BLOCKS PR

    • Security vulnerabilities
    • Data loss risks
    • Authentication bypasses
  2. 3+ MAJOR issues β†’ BLOCKS PR

    • Significant bugs
    • Performance problems
    • Logic errors
  3. Requirement coverage < 70% β†’ BLOCKS PR (when Jira enabled)

    • Incomplete Jira implementation
    • Missing acceptance criteria

MCP Servers

Yama V2 uses MCP (Model Context Protocol) servers for tool access:

Bitbucket MCP

  • Package: @anthropic/bitbucket-mcp-server
  • Tools: get_pull_request, add_comment, search_code, etc.
  • Status: Production ready

Jira MCP

  • Package: @nexus2520/jira-mcp-server
  • Tools: get_issue, search_issues, get_issue_comments
  • Status: Optional integration

Monitoring & Analytics

Track review performance with Langfuse integration:

# Set Langfuse environment variables
export LANGFUSE_PUBLIC_KEY=your-public-key
export LANGFUSE_SECRET_KEY=your-secret-key

Analytics include:

  • Tool calls made
  • Token usage
  • Cost estimate
  • Duration
  • Decision rationale

Troubleshooting

MCP Server Connection Issues

# Verify environment variables
echo $BITBUCKET_USERNAME
echo $BITBUCKET_APP_PASSWORD
echo $BITBUCKET_BASE_URL

AI Not Finding Issues

  • Check focusAreas in config
  • Verify blockingCriteria are clear
  • Ensure temperature is low (0.2-0.3)
  • Review project-specific standards in memory-bank

High Token Usage

  • Enable lazyLoading: true in config
  • Reduce maxFilesPerReview
  • Set maxToolCallsPerFile limit
  • Use excludePatterns to skip generated files

Performance

Expected Metrics

Metric Target
Review time < 10 min for 20 files
Token usage < 500K per review
Cost per review < $2 USD
Accuracy > 95% of V1 findings

Optimization Tips

  1. Use lazy loading - Don't pre-fetch everything
  2. Cache tool results - Reuse MCP responses
  3. Exclude generated files - Skip lock files, minified code
  4. Limit file count - Split large PRs

Migration from V1

Breaking Change: V1 has been completely replaced by V2. There is no backward compatibility.

Automated Config Migration

Use the built-in migration script to convert your V1 config to V2 format:

# Rename your current config to V1
mv yama.config.yaml yama.v1.config.yaml

# Run migration (dry-run first to preview)
npx yama migrate-config --dry-run

# Run actual migration
npx yama migrate-config

# Or with custom paths
npx yama migrate-config \
  --input yama.v1.config.yaml \
  --output yama.config.yaml \
  --force

The migration script will:

  • βœ… Migrate AI provider settings
  • βœ… Convert focus areas to structured format
  • βœ… Transform required sections with descriptions
  • βœ… Apply V2 defaults for new features
  • ⚠️ Warn about dropped V1 features (batchProcessing, multiInstance, etc.)
  • πŸ“Š Generate a detailed migration report

V1 β†’ V2 Migration Steps

  1. Migrate configuration (automated):
npx yama migrate-config
  1. Update imports:
// V1 (removed)
// import { Guardian } from "@juspay/yama";

// V2 (use this)
import { createYamaV2 } from "@juspay/yama";
const yama = createYamaV2();
  1. Set environment variables: V2 uses MCP servers configured via env vars
# Bitbucket (required)
export BITBUCKET_USERNAME=your.email@company.com
export BITBUCKET_APP_PASSWORD=your-http-access-token
export BITBUCKET_BASE_URL=https://bitbucket.yourcompany.com

# Jira (optional)
export JIRA_EMAIL=your-email@company.com
export JIRA_API_TOKEN=your-jira-api-token
export JIRA_BASE_URL=https://yourcompany.atlassian.net
  1. Test thoroughly: V2 uses autonomous AI orchestration - validate behavior in dry-run mode first
npx yama review --workspace YOUR_WORKSPACE --repository my-repo --pr 123 --dry-run

What Gets Migrated

V1 Section V2 Section Notes
providers.ai ai Direct mapping
features.codeReview review Restructured
features.descriptionEnhancement descriptionEnhancement Restructured
monitoring monitoring Enhanced
rules projectStandards Converted to focus areas

What Gets Dropped

These V1 features are removed in V2 (AI handles autonomously):

  • providers.git β†’ Use environment variables
  • features.codeReview.batchProcessing β†’ AI manages batching
  • features.codeReview.multiInstance β†’ Single autonomous agent
  • features.codeReview.semanticDeduplication β†’ AI deduplicates naturally
  • features.securityScan β†’ Built into AI prompts
  • cache β†’ MCP tools handle caching

Contributing

We welcome contributions! Please see our Contributing Guide for details.

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Support

License

MIT License - see LICENSE for details.


βš”οΈ Built with ❀️ by Juspay β€’ Powered by AI & MCP β€’ Autonomous Code Quality Justice

About

No description, website, or topics provided.

Resources

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 7

0