8000 GitHub - hunterhogan/astToolkit: A toolkit for manipulating and transforming Python Abstract Syntax Trees (AST).
[go: up one dir, main page]

Skip to content

A toolkit for manipulating and transforming Python Abstract Syntax Trees (AST).

License

Notifications You must be signed in to change notification settings

hunterhogan/astToolkit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

astToolkit

Do You Want This Package?

astToolkit provides a powerfully composable system for manipulating Python Abstract Syntax Trees. Use it when:

  • You need to programmatically analyze, transform, or generate Python code.
  • You want type-safe operations that help prevent AST manipulation errors.
  • You prefer working with a consistent, fluent API rather than raw AST nodes.
  • You desire the ability to compose complex AST transformations from simple, reusable parts.

Don't use it for simple text-based code manipulation—use regex or string operatio 8000 ns instead.

Architecture

astToolkit implements a layered architecture designed for composability and type safety:

  1. Core "Atomic" Classes - The foundation of the system:

    • Be: Type guards that return TypeIs[ast.NodeType] for safe type narrowing.
    • DOT: Read-only accessors that retrieve node attributes with proper typing.
    • Grab: Transformation functions that modify specific attributes while preserving node structure.
    • Make: Factory methods that create properly configured AST nodes with consistent interfaces.
  2. Traversal and Transformation - Built on the visitor pattern:

    • NodeTourist: Extends ast.NodeVisitor to extract information from nodes that match the antecedent (sometimes called "predicate").
    • NodeChanger: Extends ast.NodeTransformer to selectively transform nodes that match antecedents.
  3. Composable APIs - The antecedent-action pattern:

    • ClassIsAndAttribute: A powerful antecedent constructor: it confirms the class type of node, then applies whatever condition check you want to an attribute of node. As long as you listen to your type checker, you won't accidentally pair an attribute to a class that doesn't have that attribute. Furthermore, your IDE's hover type hints will tell you which classes are valid for the attribute you are checking.
    • IfThis: Generates predicate functions that identify nodes based on structure, content, or relationships.
    • Then: Creates action functions that specify what to do with matched nodes (extract, replace, modify).
  4. Higher-level Tools - Built from the core components:

    • _toolkitAST.py: Functions for common operations like extracting function definitions or importing modules.
    • transformationTools.py: Advanced utilities like function inlining and code generation.
    • IngredientsFunction and IngredientsModule: Containers for holding AST components and their dependencies.
  5. Type System - Over 120 specialized types for AST components:

    • Custom type annotations for AST node attributes.
    • Union types that accurately model Python's AST structure.
    • Type guards that enable static type checkers to understand dynamic type narrowing.

Easy-to-use Tools for Annoying Tasks

  • extractClassDef
  • extractFunctionDef
  • parseLogicalPath2astModule
  • parsePathFilename2astModule

Easy-to-use Tools for More Complicated Tasks

  • removeUnusedParameters
  • write_astModule

The toolFactory

Hypothetically, you could customize every aspect of the classes Be, DOT, GRAB, and Make and more than 100 TypeAlias in the toolFactory directory/package.

Usage

astToolkit provides a comprehensive set of tools for AST manipulation, organized in a layered architecture for composability and type safety. The following examples demonstrate how to use these tools in real-world scenarios.

Core Pattern: Layered AST Manipulation

The astToolkit approach follows a layered pattern:

  1. Create/Access/Check - Use Make, DOT, and Be to work with AST nodes
  2. Locate - Use IfThis predicates to identify nodes of interest
  3. Transform - Use NodeChanger and Then to modify nodes
  4. Extract - Use NodeTourist to collect information from the AST

Example 1: Extracting Information from AST

This example shows how to extract information from a function's parameters:

from astToolkit import Be, DOT, NodeTourist, Then
import ast

# Parse some Python code into an AST
code = """
def process_data(state: DataClass):
    result = state.value * 2
    return result
"""
tree = ast.parse(code)

# Extract the parameter name from the function
function_def = tree.body[0]
param_name = NodeTourist(
    Be.arg,                  # Look for function parameters
    Then.extractIt(DOT.arg)  # Extract the parameter name
).captureLastMatch(function_def)

print(f"Function parameter name: {param_name}")  # Outputs: state

# Extract the parameter's type annotation
annotation = NodeTourist(
    Be.arg,                       # Look for function parameters
    Then.extractIt(DOT.annotation)  # Extract the type annotation
).captureLastMatch(function_def)

if annotation and Be.Name(annotation):
    annotation_name = DOT.id(annotation)
    print(f"Parameter type: {annotation_name}")  # Outputs: DataClass

Example 2: Transforming AST Nodes

This example demonstrates how to transform a specific node in the AST:

from astToolkit import Be, IfThis, Make, NodeChanger, Then
import ast

# Parse some Python code into an AST
code = """
def double(x):
    return x * 2
"""
tree = ast.parse(code)

# Define a predicate to find the multiplication operation
find_mult = Be.Mult

# Define a transformation to change multiplication to addition
change_to_add = Then.replaceWith(ast.Add())

# Apply the transformation
NodeChanger(find_mult, change_to_add).visit(tree)

# Now the code is equivalent to:
# def double(x):
#     return x + x
print(ast.unparse(tree))

Example 3: Advanced AST Transformation with Custom Predicates

This example shows a more complex transformation inspired by the mapFolding package:

from astToolkit import str, Be, DOT, Grab, IfThis as astToolkit_IfThis, Make, NodeChanger, Then
import ast

# Define custom predicates by extending IfThis
class IfThis(astToolkit_IfThis):
  @staticmethod
  def isAttributeNamespaceIdentifierGreaterThan0(
      namespace: str,
      identifier: str
      ) -> Callable[[ast.AST], TypeIs[ast.Compare] | bool]:

    return lambda node: (
        Be.Compare(node)
        and IfThis.isAttributeNamespaceIdentifier(namespace, identifier)(DOT.left(node))
        and Be.Gt(node.ops[0])
        and IfThis.isConstant_value(0)(node.comparators[0]))

  @staticmethod
  def isWhileAttributeNamespaceIdentifierGreaterThan0(
      namespace: str,
      identifier: str
      ) -> Callable[[ast.AST], TypeIs[ast.While] | bool]:

    return lambda node: (
        Be.While(node)
        and IfThis.isAttributeNamespaceIdentifierGreaterThan0(namespace, identifier)(DOT.test(node)))

# Parse some code
code = """
while claude.counter > 0:
    result += counter
    counter -= 1
"""
tree = ast.parse(code)

# Find the while loop with our custom predicate
find_while_loop = IfThis.isWhileAttributeNamespaceIdentifierGreaterThan0("claude", "counter")

# Replace counter > 0 with counter > 1
change_condition = Grab.testAttribute(
    Grab.comparatorsAttribute(
        Then.replaceWith([Make.Constant(1)])
    )
)

# Apply the transformation
NodeChanger(find_while_loop, change_condition).visit(tree)

print(ast.unparse(tree))
# Now outputs:
# while counter > 1:
#     result += counter
#     counter -= 1

Example 4: Building Code Generation Systems

The following example shows how to set up a foundation for code generation and transformation systems:

from astToolkit import (
    Be, DOT, IngredientsFunction, IngredientsModule, LedgerOfImports,
    Make, NodeTourist, Then, parseLogicalPath2astModule, write_astModule
)
import ast

# Parse a module to extract a function
module_ast = parseLogicalPath2astModule("my_package.source_module")

# Extract a function and track its imports
function_name = "target_function"
function_def = NodeTourist(
    IfThis.isFunctionDefIdentifier(function_name),
    Then.extractIt
).captureLastMatch(module_ast)

if function_def:
    # Create a self-contained function with tracked imports
    ingredients = IngredientsFunction(
        function_def,
        LedgerOfImports(module_ast)
    )

    # Rename the function
    ingredients.astFunctionDef.name = "optimized_" + function_name

    # Add a decorator
    decorator = Make.Call(
        Make.Name("jit"),
        [],
        [Make.keyword("cache", Make.Constant(True))]
    )
    ingredients.astFunctionDef.decorator_list.append(decorator)

    # Add required import
    ingredients.imports.addImportFrom_asStr("numba", "jit")

    # Create a module and write it to disk
    module = IngredientsModule(ingredients)
    write_astModule(module, "path/to/gener
A55F
ated_code.py", "my_package")

Example 5: Extending Core Classes

To create specialized patterns for your codebase, extend the core classes:

from astToolkit import str, Be, IfThis as astToolkit_IfThis
from collections.abc import Callable
from typing import TypeIs
import ast

class IfThis(astToolkit_IfThis):
    @staticmethod
    def isAttributeNamespaceIdentifierGreaterThan0(
        namespace: str,
        identifier: str
    ) -> Callable[[ast.AST], TypeIs[ast.Compare] | bool]:
        """Find comparisons like 'state.counter > 0'"""
        return lambda node: (
            Be.Compare(node)
            and IfThis.isAttributeNamespaceIdentifier(namespace, identifier)(node.left)
            and Be.Gt(node.ops[0])
            and IfThis.isConstant_value(0)(node.comparators[0])
        )

    @staticmethod
    def isWhileAttributeNamespaceIdentifierGreaterThan0(
        namespace: str,
        identifier: str
    ) -> Callable[[ast.AST], TypeIs[ast.While] | bool]:
        """Find while loops like 'while state.counter > 0:'"""
        return lambda node: (
            Be.While(node)
            and IfThis.isAttributeNamespaceIdentifierGreaterThan0(namespace, identifier)(node.test)
        )

Real-world Application: Code Transformation Assembly-line

In the mapFolding project, astToolkit is used to build a complete transformation assembly-line that:

  1. Extracts algorithms from source modules
  2. Transforms them into optimized variants
  3. Applies numerical computing decorators
  4. Handles dataclass management and type systems
  5. Generates complete modules with proper imports

This pattern enables the separation of readable algorithm implementations from their high-performance variants while ensuring they remain functionally equivalent.

For deeper examples, see the mapFolding/someAssemblyRequired directory.

Installation

pip install astToolkit

My Recovery

Static Badge YouTube Channel Subscribers

How to code

Coding One Step at a Time:

  1. WRITE CODE.
  2. Don't write stupid code that's hard to revise.
  3. Write good code.
  4. When revising, write better code.

CC-BY-NC-4.0

About

A toolkit for manipulating and transforming Python Abstract Syntax Trees (AST).

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

0