8000 fix: ensure numpy version matches in `remote_function` deployment by tswast · Pull Request #798 · googleapis/python-bigquery-dataframes · GitHub
[go: up one dir, main page]

Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
8000 File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions bigframes/functions/remote_function.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@
import warnings

import ibis
import numpy
import pandas
import pyarrow
import requests
Expand Down Expand Up @@ -280,6 +281,9 @@ def generate_cloud_function_code(
if is_row_processor:
# bigframes remote function will send an entire row of data as json,
# which would be converted to a pandas series and processed
# Ensure numpy versions match to avoid unpickling problems. See
# internal issue b/347934471.
requirements.append(f"numpy=={numpy.__version__}")
requirements.append(f"pandas=={pandas.__version__}")
requirements.append(f"pyarrow=={pyarrow.__version__}")
if package_requirements:
Expand Down
103 changes: 0 additions & 103 deletions tests/system/small/test_remote_function.py
Original file line number Diff line number Diff line change
Expand Up @@ -742,109 +742,6 @@ def test_read_gbq_function_enforces_explicit_types(
)


@pytest.mark.flaky(retries=2, delay=120)
def test_df_apply_axis_1(session, scalars_dfs):
columns = [
"bool_col",
"int64_col",
"int64_too",
"float64_col",
"string_col",
"bytes_col",
]
scalars_df, scalars_pandas_df = scalars_dfs

def add_ints(row): 8000
return row["int64_col"] + row["int64_too"]

with pytest.warns(
bigframes.exceptions.PreviewWarning,
match="input_types=Series is in preview.",
):
add_ints_remote = session.remote_function(
bigframes.series.Series,
int,
)(add_ints)

with pytest.warns(
bigframes.exceptions.PreviewWarning, match="axis=1 scenario is in preview."
):
bf_result = scalars_df[columns].apply(add_ints_remote, axis=1).to_pandas()

pd_result = scalars_pandas_df[columns].apply(add_ints, axis=1)

# bf_result.dtype is 'Int64' while pd_result.dtype is 'object', ignore this
# mismatch by using check_dtype=False.
#
# bf_result.to_numpy() produces an array of numpy.float64's
# (in system_prerelease tests), while pd_result.to_numpy() produces an
# array of ints, ignore this mismatch by using check_exact=False.
pd.testing.assert_series_equal(
pd_result, bf_result, check_dtype=False, check_exact=False
)


@pytest.mark.flaky(retries=2, delay=120)
def test_df_apply_axis_1_ordering(session, scalars_dfs):
columns = ["bool_col", "int64_col", "int64_too", "float64_col", "string_col"]
ordering_columns = ["bool_col", "int64_col"]
scalars_df, scalars_pandas_df = scalars_dfs

def add_ints(row):
return row["int64_col"] + row["int64_too"]

add_ints_remote = session.remote_function(bigframes.series.Series, int)(add_ints)

bf_result = (
scalars_df[columns]
.sort_values(ordering_columns)
.apply(add_ints_remote, axis=1)
.to_pandas()
)
pd_result = (
scalars_pandas_df[columns].sort_values(ordering_columns).apply(add_ints, axis=1)
)

# bf_result.dtype is 'Int64' while pd_result.dtype is 'object', ignore this
# mismatch by using check_dtype=False.
#
# bf_result.to_numpy() produces an array of numpy.float64's
# (in system_prerelease tests), while pd_result.to_numpy() produces an
# array of ints, ignore this mismatch by using check_exact=False.
pd.testing.assert_series_equal(
pd_resu 909A lt, bf_result, check_dtype=False, check_exact=False
)


@pytest.mark.flaky(retries=2, delay=120)
def test_df_apply_axis_1_multiindex(session):
pd_df = pd.DataFrame(
{"x": [1, 2, 3], "y": [1.5, 3.75, 5], "z": ["pq", "rs", "tu"]},
index=pd.MultiIndex.from_tuples([("a", 100), ("a", 200), ("b", 300)]),
)
bf_df = session.read_pandas(pd_df)

def add_numbers(row):
return row["x"] + row["y"]

add_numbers_remote = session.remote_function(bigframes.series.Series, float)(
add_numbers
)

bf_result = bf_df.apply(add_numbers_remote, axis=1).to_pandas()
pd_result = pd_df.apply(add_numbers, axis=1)

# bf_result.dtype is 'Float64' while pd_result.dtype is 'float64', ignore this
# mismatch by using check_dtype=False.
#
# bf_result.index[0].dtype is 'string[pyarrow]' while
# pd_result.index[0].dtype is 'object', ignore this mismatch by using
# check_index_type=False.
pd.testing.assert_series_equal(
pd_result, bf_result, check_dtype=False, check_index_type=False
)


def test_df_apply_axis_1_unsupported_callable(scalars_dfs):
scalars_df, scalars_pandas_df = scalars_dfs
columns = ["bool_col", "int64_col", "int64_too", "float64_col", "string_col"]
Expand Down
0