8000 llama : fix session saving/loading by ggerganov · Pull Request #3400 · ggml-org/llama.cpp · GitHub
[go: up one dir, main page]

Skip to content

llama : fix session saving/loading #3400

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Oct 3, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
llama : fix session saving/loading
  • Loading branch information
ggerganov committed Sep 29, 2023
commit b0670db34f7a9ef7087ccc0247699383df6a08a0
8 changes: 4 additions & 4 deletions examples/chat-persistent.sh
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ if [[ -z "${PROMPT_CACHE_FILE+x}" || -z "${CHAT_SAVE_DIR+x}" ]]; then
exit 1
fi

MODEL="${MODEL:-./models/13B/ggml-model-q4_0.bin}"
MODEL="${MODEL:-./models/llama-13b/ggml-model-q4_0.gguf}"
PROMPT_TEMPLATE="${PROMPT_TEMPLATE:-./prompts/chat.txt}"
USER_NAME="${USER_NAME:-User}"
AI_NAME="${AI_NAME:-ChatLLaMa}"
Expand Down Expand Up @@ -61,9 +61,9 @@ fi

if [[ ! -e "$PROMPT_CACHE_FILE" ]]; then
echo 'Prompt cache does not exist, building...'
# Default batch_size to 8 here for better user feedback during initial prompt processing
# Default batch_size to 64 here for better user feedback during initial prompt processing
./main 2>>"$LOG" \
--batch_size 8 \
--batch_size 64 \
"${OPTS[@]}" \
--prompt-cache "$PROMPT_CACHE_FILE" \
--file "$CUR_PROMPT_FILE" \
Expand Down Expand Up @@ -132,7 +132,7 @@ while read -e line; do
# HACK get num tokens from debug message
# TODO get both messages in one go
if ! session_size_msg="$(tail -n30 "$LOG" | grep -oE "$SESSION_SIZE_MSG_PATTERN")" ||
! sample_time_msg="$( tail -n10 "$LOG" | grep -oE "$SAMPLE_TIME_MSG_PATTERN")"; then
! sample_time_msg="$(tail -n10 "$LOG" | grep -oE "$SAMPLE_TIME_MSG_PATTERN")"; then
echo >&2 "Couldn't get number of tokens from ./main output!"
exit 1
fi
Expand Down
93 changes: 60 additions & 33 deletions llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -7044,16 +7044,6 @@ struct llama_data_file_context : llama_data_context {
*
*/
static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
// TODO: does not support multi-sequence states
{
const auto & kv_self = ctx->kv_self;
for (uint32_t i = 0; i < kv_self.head; ++i) {
GGML_ASSERT(kv_self.cells[i].pos == (int32_t) i);
GGML_ASSERT(kv_self.cells[i].seq_id.size() == 1);
GGML_ASSERT(kv_self.cells[i].has_seq_id(0));
}
}

// copy rng
{
std::stringstream rng_ss;
Expand Down Expand Up @@ -7106,36 +7096,38 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
const auto & hparams = ctx->model.hparams;
const auto & cparams = ctx->cparams;

const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd_gqa();
const int n_ctx = cparams.n_ctx;
const auto n_layer = hparams.n_layer;
const auto n_embd = hparams.n_embd_gqa();
const auto n_ctx = cparams.n_ctx;

const size_t kv_size = kv_self.buf.size;
const int kv_ntok = kv_self.head;
const size_t kv_buf_size = kv_self.buf.size;
const uint32_t kv_head = kv_self.head;
const uint32_t kv_size = kv_self.size;

data_ctx->write(&kv_size, sizeof(kv_size));
data_ctx->write(&kv_ntok, sizeof(kv_ntok));
data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
data_ctx->write(&kv_head, sizeof(kv_head));
data_ctx->write(&kv_size, sizeof(kv_size));

if (kv_size) {
if (kv_buf_size) {
const size_t elt_size = ggml_element_size(kv_self.k);

ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
ggml_cgraph gf{};

ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
kout3d->data = kout3d_data.data();

ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
vout3d->data = vout3d_data.data();

ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
n_embd, kv_ntok, n_layer,
n_embd, kv_head, n_layer,
elt_size*n_embd, elt_size*n_embd*n_ctx, 0);

ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
kv_ntok, n_embd, n_layer,
kv_head, n_embd, n_layer,
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);

ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
Expand All @@ -7149,6 +7141,20 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
data_ctx->write(kout3d_data.data(), kout3d_data.size());
data_ctx->write(vout3d_data.data(), vout3d_data.size());
}

for (uint32_t i = 0; i < kv_size; ++i) {
const auto & cell = kv_self.cells[i];

const llama_pos pos = cell.pos;
const size_t seq_id_size = cell.seq_id.size();

data_ctx->write(&pos, sizeof(pos));
data_ctx->write(&seq_id_size, sizeof(seq_id_size));

for (auto seq_id : cell.seq_id) {
data_ctx->write(&seq_id, sizeof(seq_id));
}
}
}
}

Expand Down Expand Up @@ -7220,34 +7226,36 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
const int n_embd = hparams.n_embd_gqa();
const int n_ctx = cparams.n_ctx;

size_t kv_size;
int kv_ntok;
size_t kv_buf_size;
uint32_t kv_head;
uint32_t kv_size;

memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);

if (kv_size) {
GGML_ASSERT(kv_self.buf.size == kv_size);
if (kv_buf_size) {
GGML_ASSERT(kv_self.buf.size == kv_buf_size);

const size_t elt_size = ggml_element_size(kv_self.k);

ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
ggml_cgraph gf{};

ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
kin3d->data = (void *) inp;
inp += ggml_nbytes(kin3d);

ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
vin3d->data = (void *) inp;
inp += ggml_nbytes(vin3d);

ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
n_embd, kv_ntok, n_layer,
n_embd, kv_head, n_layer,
elt_size*n_embd, elt_size*n_embd*n_ctx, 0);

ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
kv_ntok, n_embd, n_layer,
kv_head, n_embd, n_layer,
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);

ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
Expand All @@ -7257,8 +7265,27 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
ggml_free(cpy_ctx);
}

ctx->kv_self.head = kv_ntok;
ctx->kv_self.head = kv_head;
ctx->kv_self.size = kv_size;

ctx->kv_self.cells.resize(kv_size);

for (uint32_t i = 0; i < kv_size; ++i) {
llama_pos pos;
size_t seq_id_size;

memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);

ctx->kv_self.cells[i].pos = pos;

llama_seq_id seq_id;

for (size_t j = 0; j < seq_id_size; ++j) {
memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
ctx->kv_self.cells[i].seq_id.insert(seq_id);
}
}
}

const size_t nread = inp - src;
Expand Down
2 changes: 1 addition & 1 deletion llama.h
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'

#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 1
#define LLAMA_SESSION_VERSION 2

#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
Expand Down
0