8000 (draft) tts: Orpheus support by jamorphy · Pull Request #12487 · ggml-org/llama.cpp · GitHub
[go: up one dir, main page]

Skip to content

(draft) tts: Orpheus support #12487

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 10 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
176 changes: 176 additions & 0 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -2327,6 +2327,182 @@ def set_gguf_parameters(self):
self.gguf_writer.add_causal_attention(False)


@Model.register("SNACDec")
class SNACDecModel(Model):
model_arch = gguf.MODEL_ARCH.SNAC_DEC

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._dummy_added = False

def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[Tuple[str, torch.Tensor]]:
"""Convert nested PyTorch tensor names to a flat GGUF naming scheme for decoder tensors."""
del bid # Unused

# Add dummy token_embd.weight only once
if not self._dummy_added:
import torch
dummy_tok_embd = torch.zeros((4096, 8), dtype=torch.float16)
dummy_tok_embd = dummy_tok_embd.view(4096, 8)
logger.info(f"Adding dummy tensor: token_embd.weight, shape: {list(dummy_tok_embd.shape)}")
yield ("token_embd.weight", dummy_tok_embd)
self._dummy_added = True # Mark as added

original_name = name

if name.startswith("quantizer.quantizers."):
match = re.match(r"quantizer\.quantizers\.(\d+)\.(codebook\.weight|out_proj\.bias|out_proj\.parametrizations\.weight\.original[0-1])", name)
if match:
q_idx = int(match.group(1))
tensor_type = match.group(2)
if tensor_type == "codebook.weight":
new_name = f"quantizer.{q_idx}.codebook"
elif tensor_type == "out_proj.parametrizations.weight.original0":
new_name = f"quantizer.{q_idx}.out_proj.scale"
elif tensor_type == "out_proj.parametrizations.weight.original1":
new_name = f"quantizer.{q_idx}.out_proj.weight"
elif tensor_type == "out_proj.bias":
new_name = f"quantizer.{q_idx}.out_proj.bias"

logger.info(f"Mapping {original_name} -> {new_name}, shape: {list(data_torch.shape)}")
yield (new_name, data_torch)
else:
logger.warning(f"Could not parse quantizer tensor from: {original_name}")
return

# Skip non-decoder tensors (except quantizers, which were handled above)
if not name.startswith("decoder."):
logger.debug(f"Skipping non-decoder tensor: {original_name}")
return

base = name[8:] # Remove 'decoder.'
parts = base.split(".")

if base.startswith("model.0."):
logger.info(f"Skipping incompatible decoder layer 0 tensor: {original_name}")
return # Explicitly skip this layer

# Layer 1: Second Conv
if base.startswith("model.1."):
if "bias" in name and "parametrizations" not in name:
new_name = "decoder.1.conv2.bias"
elif "parametrizations.weight.original0" in name:
new_name = "decoder.1.conv2.scale"
elif "parametrizations.weight.original1" in name:
new_name = "decoder.1.conv2.weight"
else:
logger.warning(f"Unhandled layer 1 tensor: {original_name}")
return
logger.info(f"Mapping {original_name} -> {new_name}, shape: {list(data_torch.shape)}")
yield (new_name, data_torch)
return

# Layers 2–5: DecoderBlocks
if "model." in base and "block" in base:
try:
layer_idx = int(parts[1]) # e.g., '2' from 'model.2'
if layer_idx not in {2, 3, 4, 5}:
logger.debug(f"Skipping non-DecoderBlock layer {layer_idx}: {original_name}")
return
block_idx = int(parts[3]) # e.g., '1' from 'block.1'
new_base = f"decoder.{layer_idx}.block.{block_idx}"

if block_idx == 0: # Snake1d
if "alpha" in name:
new_name = f"{new_base}.alpha"
else:
logger.error(f"Expected 'alpha' in {original_name}")
return
elif block_idx == 1: # Transpose Conv
if "bias" in name and "parametrizations" not in name:
new_name = f"{new_base}.trans.bias"
elif "parametrizations.weight.original0" in name:
new_name = f"{new_base}.trans.scale"
elif "parametrizations.weight.original1" in name:
new_name = f"{new_base}.trans.weight"
else:
logger.error(f"Unhandled tensor in block 1: {original_name}")
return
elif block_idx == 2: # Noise Block
if "linear.parametrizations.weight.original0" in name:
new_name = f"{new_base}.noise.scale"
elif "linear.parametrizations.weight.original1" in name:
new_name = f"{new_base}.noise.weight"
else:
logger.error(f"Unhandled tensor in block 2: {original_name}")
return
elif block_idx in {3, 4, 5}: # Residual Units
res_base = f"{new_base}.res"
if "block.0.alpha" in name:
new_name = f"{res_base}.snake1.alpha"
elif "block.1.bias" in name:
new_name = f"{res_base}.conv1.bias"
elif "block.1.parametrizations.weight.original0" in name:
new_name = f"{res_base}.conv1.scale"
elif "block.1.parametrizations.weight.original1" in name:
new_name = f"{res_base}.conv1.weight"
elif "block.2.alpha" in name:
new_name = f"{res_base}.snake2.alpha"
elif "block.3.bias" in name:
new_name = f"{res_base}.conv2.bias"
elif "block.3.parametrizations.weight.original0" in name:
new_name = f"{res_base}.conv2.scale"
elif "block.3.parametrizations.weight.original1" in name:
new_name = f"{res_base}.conv2.weight"
else:
logger.error(f"Unhandled tensor in residual unit: {original_name}")
return
else:
logger.error(f"Unhandled block index {block_idx} in layer {layer_idx}: {original_name}")
return

logger.info(f"Mapping {original_name} -> {new_name}, shape: {list(data_torch.shape)}")
yield (new_name, data_torch)
return

except (IndexError, ValueError) as e:
logger.error(f"Failed to parse tensor {original_name}: {e}")
return

# Layer 6: Snake1d
if base == "model.6.alpha":
new_name = "decoder.6.alpha"
logger.info(f"Mapping {original_name} -> {new_name}, shape: {list(data_torch.shape)}")
yield (new_name, data_torch)
return

# Layer 7: Final Conv
if base.startswith("model.7."):
if "bias" in name and "parametrizations" not in name:
new_name = "decoder.7.conv.bias"
elif "parametrizations.weight.original0" in name:
new_name = "decoder.7.conv.scale"
elif "parametrizations.weight.original1" in name:
new_name = "decoder.7.conv.weight"
else:
logger.warning(f"Unhandled layer 7 tensor: {original_name}")
return
logger.info(f"Mapping {original_name} -> {new_name}, shape: {list(data_torch.shape)}")
yield (new_name, data_torch)
return

logger.warning(f"Tensor {original_name} not mapped to any layer")
return

def set_vocab(self):
self._set_vocab_none()

def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
self.gguf_writer.add_uint32("snac.quantizer.codebook_size", self.hparams["codebook_size"])
self.gguf_writer.add_uint32("snac.quantizer.codebook_dim", self.hparams["codebook_dim"])
self.gguf_writer.add_embedding_length(self.hparams["decoder_dim"]) # 1024
self.gguf_writer.add_decoder_upsample_rates(self.hparams["decoder_rates"]) # [8, 8, 4, 2]
self.gguf_writer.add_uint32("n_layers", 8)
self.gguf_writer.add_array("decoder_channel_dims", [768, 1024, 512, 256, 128, 64, 1])
self.gguf_writer.add_array("vq_strides", self.hparams["vq_strides"])

@Model.register("Qwen2MoeForCausalLM")
class Qwen2MoeModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN2MOE
Expand Down
6 changes: 6 additions & 0 deletions examples/tts/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,3 +3,9 @@ add_executable(${TARGET} tts.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

set(TARGET llama-orpheus-tts)
add_executable(${TARGET} orpheus-tts.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)
Loading
0