10000 GitHub - andreafagan/client_python: Prometheus instrumentation library for Python applications
[go: up one dir, main page]

Skip to content

Prometheus instrumentation library for Python applications

License

Notifications You must be signed in to change notification settings

andreafagan/client_python

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Prometheus Python Client

This client is under active development.

Installation

pip install prometheus_client

This package can be found on PyPI.

Instrumenting

Three types of metric are offered: Counter, Gauge, and Summary. See the documentation on metric types and instrumentation best practices on how to use them.

Counter

Counters go up, and reset when the process restarts.

from prometheus_client import Counter
c = Counter('my_failures_total', 'Description of counter')
c.inc()     # Increment by 1
c.inc(1.6)  # Increment by given value

There are utilities to count exceptions raised:

@c.count_exceptions()
def f():
  pass

with c.count_exceptions():
  pass

# Count only one type of exception
with c.count_exceptions(ValueError):
  pass

Gauge

Gauges can go up and down.

from prometheus_client import Gauge
g = Gauge('my_inprogress_requests', 'Description of gauge')
g.inc()      # Increment by 1
g.dec(10)    # Decrement by given value
g.set(4.2)   # Set to a given value

There are utilities for common use cases:

g.set_to_current_time()   # Set to current unixtime

# Increment when entered, decrement when exited.
@g.track_inprogress()
def f():
  pass

with g.track_inprogress():
  pass

Summary

Summaries track the size and number of events.

from prometheus_client import Summary
s = Summary('request_latency_seconds', 'Description of summary')
s.observe(4.7)    # Observe 4.7 (seconds in this case)

There are utilities for timing code:

@s.time()
def f():
  pass

with s.time():
  pass

Histogram

Histograms track the size and number of events in buckets. This allows for aggregatable calculation of quantiles.

from prometheus_client import Histogram
h = Histogram('request_latency_seconds', 'Description of histogram')
h.observe(4.7)    # Observe 4.7 (seconds in this case)

The default buckets are intended to cover a typical web/rpc request from milliseconds to seconds. They can be overridden by passing buckets keyword argument to Histogram.

There are utilities for timing code:

@h.time()
def f():
  pass

with h.time():
  pass

Labels

All metrics can have labels, allowing grouping of related time series.

See the best practices on naming and labels.

Taking a counter as an example:

from prometheus_client import Counter
c = Counter('my_requests_total', 'HTTP Failures', ['method', 'endpoint'])
c.labels('get', '/').inc()
c.labels('post', '/submit').inc()

Exporting

There are several options for exporting metrics.

HTTP handler

Metrics are usually exposed over HTTP, to be read by the Prometheus server. For example:

Python 2:

from prometheus_client import MetricsHandler
from BaseHTTPServer import HTTPServer
server_address = ('', 8000)
httpd = HTTPServer(server_address, MetricsHandler)
httpd.serve_forever()

Python 3:

from prometheus_client import MetricsHandler
from http.server import HTTPServer
server_address = ('', 8000)
httpd = HTTPServer(server_address, MetricsHandler)
httpd.serve_forever()

Visit http://localhost:8000/ to view the metrics.

Node exporter textfile collector

The textfile collector allows machine-level statistics to be exported out via the Node exporter.

This is useful for monitoring cronjobs, or for writing cronjobs to expose metrics about a machine system that the Node exporter does not support or would not make sense to perform at every scrape (for example, anything involving subprocesses).

from prometheus_client import CollectorRegistry,Gauge,write_to_textfile
registry = CollectorRegistry()
g = Gauge('raid_status', '1 if raid array is okay', registry=registry)
g.set(1)
write_to_textfile('/configured/textfile/path/raid.prom', registry)

A separate registry is used, as the default registry may contain other metrics.

About

Prometheus instrumentation library for Python applications

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
0