8000 fix: fix the bug of repeated progress bar in Model.fit() by Wanglongzhi2001 · Pull Request #1123 · SciSharp/TensorFlow.NET · GitHub
[go: up one dir, main page]

Skip to content

fix: fix the bug of repeated progress bar in Model.fit() #1123

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions src/TensorFlowNET.Core/Keras/Engine/ICallback.cs
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,9 @@ public interface ICallback
void on_predict_batch_end(long end_step, Dictionary<string, Tensors> logs);
void on_predict_end();
void on_test_begin();
void on_test_end(Dictionary<string, float> logs);
void on_test_batch_begin(long step);
void on_test_batch_end(long end_step, Dictionary<string, float> logs);


}
2 changes: 1 addition & 1 deletion src/TensorFlowNET.Core/Keras/Engine/IModel.cs
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ void load_weights(string filepath,
bool skip_mismatch = false,
object options = null);

Dictionary<string, float> evaluate(Tensor x, Tensor y,
Dictionary<string, float> evaluate(NDArray x, NDArray y,
int batch_size = -1,
int verbose = 1,
int steps = -1,
Expand Down
5 changes: 5 additions & 0 deletions src/TensorFlowNET.Keras/Callbacks/CallbackList.cs
Original file line number Diff line number Diff line change
Expand Up @@ -73,4 +73,9 @@ public void on_test_batch_end(long end_step, Dictionary<string, float> logs)
{
callbacks.ForEach(x => x.on_test_batch_end(end_step, logs));
}

public void on_test_end(Dictionary<string, float> logs)
{
callbacks.ForEach(x => x.on_test_end(logs));
}
}
4 changes: 4 additions & 0 deletions src/TensorFlowNET.Keras/Callbacks/Earlystopping.cs
Original file line number Diff line number Diff line change
Expand Up @@ -150,4 +150,8 @@ public bool _is_improvement(float monitor_value, float reference_value)
return less_op;
}
}

public void on_test_end(Dictionary<string, float> logs)
{
}
}
4 changes: 4 additions & 0 deletions src/TensorFlowNET.Keras/Callbacks/History.cs
Original file line number Diff line number Diff line change
Expand Up @@ -81,4 +81,8 @@ public void on_test_batch_begin(long step)
public void on_test_batch_end(long end_step, Dictionary<string, float> logs)
{
}

public void on_test_end(Dictionary<string, float> logs)
{
}
}
3 changes: 3 additions & 0 deletions src/TensorFlowNET.Keras/Callbacks/ProgbarLogger.cs
Original file line number Diff line number Diff line change
Expand Up @@ -118,5 +118,8 @@ public void on_test_batch_end(long end_step, Dictionary<string, float> logs)
}
}

public void on_test_end(Dictionary<string, float> logs)
{
}
}
}
57 changes: 24 additions & 33 deletions src/TensorFlowNET.Keras/Engine/Model.Evaluate.cs
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ public partial class Model
/// <param name="use_multiprocessing"></param>
/// <param name="return_dict"></param>
/// <param name="is_val"></param>
public Dictionary<string, float> evaluate(Tensor x, Tensor y,
public Dictionary<string, float> evaluate(NDArray x, NDArray y,
int batch_size = -1,
int verbose = 1,
int steps = -1,
Expand Down Expand Up @@ -115,62 +115,53 @@ public Dictionary<string, float> evaluate(IDatasetV2 x, int verbose = 1, bool is
/// <param name="test_func">The function to be called on each batch of data.</param>
/// <param name="is_val">Whether it is validation or test.</param>
/// <returns></returns>
Dictionary<string, float> evaluate(DataHandler data_handler, CallbackList callbacks, bool is_val, Func<DataHandler, Tensor[], Dictionary<string, float>> test_func)
Dictionary<string, float> evaluate(DataHandler data_handler, CallbackList callbacks, bool is_val, Func<DataHandler, OwnedIterator, Dictionary<string, float>> test_func)
{
callbacks.on_test_begin();

var results = new Dictionary<string, float>();
var logs = results;
var logs = new Dictionary<string, float>();
foreach (var (epoch, iterator) in data_handler.enumerate_epochs())
{
reset_metrics();
callbacks.on_epoch_begin(epoch);
// data_handler.catch_stop_iteration();

foreach (var step in data_handler.steps())
{
callbacks.on_test_batch_begin(step);

logs = test_func(data_handler, iterator.next());

tf_with(ops.control_dependencies(Array.Empty<object>()), ctl => _train_counter.assign_add(1));

logs = test_func(data_handler, iterator);
var end_step = step + data_handler.StepIncrement;
if (!is_val)
callbacks.on_test_batch_end(end_step, logs);
}

if (!is_val)
callbacks.on_epoch_end(epoch, logs);
}

foreach (var log in logs)
{
results[log.Key] = log.Value;
}

callbacks.on_test_end(logs);
var results = new Dictionary<string, float>(logs);
return results;
}

Dictionary<string, float> test_function(DataHandler data_handler, Tensor[] data)
Dictionary<string, float> test_function(DataHandler data_handler, OwnedIterator iterator)
{
var (x, y) = data_handler.DataAdapter.Expand1d(data[0], data[1]);

var y_pred = Apply(x, training: false);
var loss = compiled_loss.Call(y, y_pred);

compiled_metrics.update_state(y, y_pred);

var outputs = metrics.Select(x => (x.Name, x.result())).ToDictionary(x => x.Name, x => (float)x.Item2);
var data = iterator.next();
var outputs = test_step(data_handler, data[0], data[1]);
tf_with(ops.control_dependencies(new object[0]), ctl => _test_counter.assign_add(1));
return outputs;
}

Dictionary<string, float> test_step_multi_inputs_function(DataHandler data_handler, Tensor[] data)
Dictionary<string, float> test_step_multi_inputs_function(DataHandler data_handler, OwnedIterator iterator)
{
var data = iterator.next();
var x_size = data_handler.DataAdapter.GetDataset().FirstInputTensorCount;
var outputs = train_step(data_handler, new Tensors(data.Take(x_size).ToArray()), new Tensors(data.Skip(x_size).ToArray()));
tf_with(ops.control_dependencies(new object[0]), ctl => _train_counter.assign_add(1));
var outputs = test_step(data_handler, data.Take(x_size).ToArray(), data.Skip(x_size).ToArray());
tf_with(ops.control_dependencies(new object[0]), ctl => _test_counter.assign_add(1));
return outputs;
}


Dictionary<string, float> test_step(DataHandler data_handler, Tensors x, Tensors y)
{
(x, y) = data_handler.DataAdapter.Expand1d(x, y);
var y_pred = Apply(x, training: false);
var loss = compiled_loss.Call(y, y_pred);
compiled_metrics.update_state(y, y_pred);
return metrics.Select(x => (x.Name, x.result())).ToDictionary(x => x.Item1, x => (float)x.Item2);
}
}
}
2 changes: 1 addition & 1 deletion src/TensorFlowNET.Keras/Engine/Model.Fit.cs
Original file line number Diff line number Diff line change
Expand Up @@ -266,7 +266,7 @@ History FitInternal(DataHandler data_handler, int epochs, int verbose, List<ICal
{
// Because evaluate calls call_test_batch_end, this interferes with our output on the screen
// so we need to pass a is_val parameter to stop on_test_batch_end
var val_logs = evaluate((Tensor)validation_data.Value.Item1, validation_data.Value.Item2, is_val:true);
var val_logs = evaluate(validation_data.Value.Item1, validation_data.Value.Item2, is_val:true);
foreach (var log in val_logs)
{
logs["val_" + log.Key] = log.Value;
Expand Down
0