8000 cuda : fix flash_attn kernel to produce same results as CPU by ggerganov · Pull Request #3 · Pints-AI/llama.cpp · GitHub
[go: up one dir, main page]

Skip to content

cuda : fix flash_attn kernel to produce same results as CPU #3

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Feb 1, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
cuda : switch to F16 scalars + tune warps for RTX 2060
  • Loading branch information
ggerganov committed Feb 1, 2024
commit 9a5c2a1681d3979d071fff0f1a9abece57f0841f
94 changes: 49 additions & 45 deletions ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -6491,8 +6491,8 @@ static __global__ void flash_attn_ext_f16(
__syncthreads();

{
float S[Q];
float M[Q];
half S[Q];
half M[Q];

for(int i = 0; i < Q; i++) {
S[i] = 0.0f;
Expand Down Expand Up @@ -6579,67 +6579,68 @@ static __global__ void flash_attn_ext_f16(
}

// used to detect blocks full of -INF
float smax = -INFINITY;
half smax = -INFINITY;

// online softmax
if (C == 32) {
for (int64_t j = 0; j < Q; ++j) {
const i 8000 nt64_t p = lane_id;

const float m = M[j];
const float s = __half2float(ss[j*T + p]);
const half m = M[j];
const half s = ss[j*T + p];

smax = warp_reduce_max(max(smax, s));
M[j] = warp_reduce_max(max(M[j], s));
smax = warp_reduce_max(__hmax(smax, s));
M[j] = warp_reduce_max(__hmax(M[j], s));

const float ms = m == -INFINITY ? 0.0f : expf(m - M[j]);
const float vs = s == -INFINITY ? 0.0f : expf(s - M[j]);
const half ms = __hisinf(m) ? 0.0f : expf(m - M[j]);
const half vs = __hisinf(s) ? 0.0f : expf(s - M[j]);

S[j] = S[j]*ms + warp_reduce_sum(vs);

// create a QxQ diagonal matrix for rescaling the output
if (p == j) {
ss[j*T + C + j] = __float2half(ms);
ss[j*T + C + j] = ms;
}

// the P matrix from the paper (Q rows, C columns)
ss[j*T + p] = __float2half(vs);
ss[j*T + p] = vs;
}
} else {
for (int64_t j = 0; j < Q; ++j) {
const float m = M[j];
const half m = M[j];

for (int64_t p = lane_id; p < C; p += NW) {
const float s = __half2float(ss[j*T + p]);
const half s = ss[j*T + p];

smax = warp_reduce_max(max(smax, s));
M[j] = warp_reduce_max(max(M[j], s));
smax = warp_reduce_max(__hmax(smax, s));
M[j] = warp_reduce_max(__hmax(M[j], s));
}

const float ms = m == -INFINITY ? 0.0f : expf(m - M[j]);
const half ms = __hisinf(m) ? 0.0f : expf(m - M[j]);

S[j] = S[j]*ms;

// create a QxQ diagonal matrix for rescaling the output
if (lane_id == j) {
ss[j*T + C + j] = __float2half(ms);
ss[j*T + C + j] = ms;
}

for (int64_t p = lane_id; p < C; p += NW) {
const float s = __half2float(ss[j*T + p]);
const half s = ss[j*T + p];

const float vs = s == -INFINITY ? 0.0f : expf(s - M[j]);
const half vs = __hisinf(s) ? 0.0f : expf(s - M[j]);

S[j] = S[j] + warp_reduce_sum(vs);

// the P matrix from the paper (Q rows, C columns)
ss[j*T + p] = __float2half(vs);
ss[j*T + p] = vs;
}
}
}


// skip -INF blocks
if (smax == -INFINITY) {
if (__hisinf(smax)) {
continue;
}

Expand Down Expand Up @@ -6686,16 +6687,16 @@ static __global__ void flash_attn_ext_f16(
// these are needed for reducing the results from the simdgroups (reuse the ss buffer)
for (int64_t j = 0; j < Q; ++j) {
if (lane_id == 0) {
ss[j*T + 0] = __float2half(S[j]);
ss[j*T + 1] = __float2half(M[j]);
ss[j*T + 0] = S[j];
ss[j*T + 1] = M[j];
}
}
}

// reduce the warps sequentially
for (int64_t sg = 1; sg < num_warps; ++sg) {
float S = 0.0f;
float M = -INFINITY;
half S = 0.0f;
half M = -INFINITY;

__syncthreads();

Expand All @@ -6713,25 +6714,25 @@ static __global__ void flash_attn_ext_f16(
// the first simdgroup accumulates the results from the other simdgroups
if (warp_id == 0) {
for (int64_t j = 0; j < Q; ++j) {
const float S0 = __half2float(ss[j*T + 0]);
const float S1 = __half2float(ss[j*T + sg*SH + 0]);
const half S0 = ss[j*T + 0];
const half S1 = ss[j*T + sg*SH + 0];

const float M0 = __half2float(ss[j*T + 1]);
const float M1 = __half2float(ss[j*T + sg*SH + 1]);
const half M0 = ss[j*T + 1];
const half M1 = ss[j*T + sg*SH + 1];

M = max(M0, M1);
M = __hmax(M0, M1);

const float ms0 = M0 == -INFINITY ? 0.0f : expf(M0 - M);
const float ms1 = M1 == -INFINITY ? 0.0f : expf(M1 - M);
const half ms0 = __hisinf(M0) ? 0.0f : expf(M0 - M);
const half ms1 = __hisinf(M1) ? 0.0f : expf(M1 - M);

S = S0*ms0 + S1*ms1;

if (lane_id == 0) {
ss[j*T + 0] = __float2half(S);
ss[j*T + 1] = __float2half(M);
ss[j*T + 0] = S;
ss[j*T + 1] = M;

ss[j*T + C + j ] = __float2half(ms0);
ss[j*T + C + j + sg*SH] = __float2half(ms1);
ss[j*T + C + j ] = ms0;
ss[j*T + C + j + sg*SH] = ms1;
}
}

Expand Down Expand Up @@ -6774,10 +6775,10 @@ static __global__ void flash_attn_ext_f16(
// final rescale with 1/S and store to global memory
if (warp_id == 0) {
for (int64_t j = 0; j < Q && iq1 + j < ne01; ++j) {
const float S = __half2float(ss[j*T + 0]);
const half S = ss[j*T + 0];

for (int64_t i = lane_id; i < D; i += NW) {
dst[(iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D + i] = __half2float(sq[j*T + i]) / S;
dst[(iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D + i] = __half2float(sq[j*T + i] / S);
}
}
}
Expand Down Expand Up @@ -10930,12 +10931,15 @@ inline void ggml_cuda_flash_attn_ext(const ggml_tensor * Q, const ggml_tensor *
float scale;
memcpy(&scale, KQV->op_params, sizeof(float));

const int nqpb = 16; // queries per block
const int ncpw = 32; // cache values per warp (does not work for other values)
#define NQPB 16
#define NCPW 32

const int nqpb = NQPB; // queries per block
const int ncpw = NCPW; // cache values per warp (does not work for other values)

const int nwarps_max = 8; // TODO: we don't want to launch too much warps. how much is too much?
// TODO: produces wrong results for nwarps > 8 (RTX 2060) - not sure why
const int nwarps = Q->ne[1] <= nqpb ? MAX(4, MIN(K->ne[1]/ncpw, nwarps_max)) : 4;
const int nwarps = Q->ne[1] <= nqpb ? MAX(2, MIN(K->ne[1]/ncpw, nwarps_max)) : 2;

dim3 blocks_num((Q->ne[1] + nqpb - 1) / nqpb, Q->ne[2], Q->ne[3]);
dim3 block_dim(32, nwarps, 1);
Expand All @@ -10945,7 +10949,7 @@ inline void ggml_cuda_flash_attn_ext(const ggml_tensor * Q, const ggml_tensor *
switch (Q->ne[0])
{
case 16:
flash_attn_ext_f16<16, 16, 32>
flash_attn_ext_f16<16, NQPB, NCPW>
<<<blocks_num, block_dim, shmem, main_stream>>> (
(const char *) src0_extra->data_device[g_main_device], // Query
(const char *) src1_extra->data_device[g_main_device], // Key
Expand All @@ -10962,7 +10966,7 @@ inline void ggml_cuda_flash_attn_ext(const ggml_tensor * Q, const ggml_tensor *
);
break;
case 64:
flash_attn_ext_f16<64, 16, 32>
flash_attn_ext_f16<64, NQPB, NCPW>
<<<blocks_num, block_dim, shmem, main_stream>>> (
(const char *) src0_extra->data_device[g_main_device], // Query
(const char *) src1_extra->data_device[g_main_device], // Key
Expand All @@ -10979,7 +10983,7 @@ inline void ggml_cuda_flash_attn_ext(const ggml_tensor * Q, const ggml_tensor *
);
break;
case 80:
flash_attn_ext_f16<80, 16, 32>
flash_attn_ext_f16<80, NQPB, NCPW>
<<<blocks_num, block_dim, shmem, main_stream>>> (
(const char *) src0_extra->data_device[g_main_device], // Query
(const char *) src1_extra->data_device[g_main_device], // Key
Expand All @@ -10996,7 +11000,7 @@ inline void ggml_cuda_flash_attn_ext(const ggml_tensor * Q, const ggml_tensor *
);
break;
case 128:
flash_attn_ext_f16<128, 16, 32>
flash_attn_ext_f16<128, NQPB, NCPW>
<<<blocks_num, block_dim, shmem, main_stream>>> (
(const char *) src0_extra->data_device[g_main_device], // Query
(const char *) src1_extra->data_device[g_main_device], // Key
Expand Down
14 changes: 12 additions & 2 deletions tests/test-backend-ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -572,9 +572,19 @@ struct test_case {
// duplicate the op
size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1;
#if 1
for (int i = 1; i < n_runs; i++) {
gf->nodes[gf->n_nodes++] = out;
}
#else
n_runs = 1000;
int n_nodes = gf->n_nodes;
for (int i = 1; i < n_runs; i++) {
for (int j = 0; j < n_nodes; j++) {
gf->nodes[gf->n_nodes++] = gf->nodes[j];
}
}
#endif

// calculate memory
size_t mem = n_runs * op_size(out);
Expand Down Expand Up @@ -2199,8 +2209,8 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_pad());
test_cases.emplace_back(new test_leaky_relu());

#if 0
for (int hs : { 64, 80, 96, 112, 128, 256, }) {
#if 1
for (int hs : { 64, 80, 128, }) {
for (int nh : { 32, }) {
for (int kv : { 512, 1024, 2048, 4096, }) {
for (int nb : { 1, 2, 4, 8, 512, 1024, 2048, }) {
Expand Down
0