[go: up one dir, main page]

Skip to content

Awesome OCR toolkits based on PaddlePaddle (『飞桨』8.6M超轻量中文OCR模型,支持训练部署全流程)

License

Notifications You must be signed in to change notification settings

NickEric/PaddleOCR

 
 

Repository files navigation

English | 简体中文

简介

PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。

近期更新

  • 2020.8.26 更新OCR相关的84个常见问题及解答,具体参考FAQ
  • 2020.8.24 支持通过whl包安装使用PaddleOCR,具体参考Paddleocr Package使用说明
  • 2020.8.21 更新8月18日B站直播课回放和PPT,课节2,易学易用的OCR工具大礼包,获取地址
  • 2020.8.16 开源文本检测算法SAST和文本识别算法SRN
  • 2020.7.23 发布7月21日B站直播课回放和PPT,课节1,PaddleOCR开源大礼包全面解读,获取地址
  • 2020.7.15 添加基于EasyEdge和Paddle-Lite的移动端DEMO,支持iOS和Android系统
  • more

特性

  • 超轻量级中文OCR模型,总模型仅8.6M
    • 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
    • 检测模型DB(4.1M)+识别模型CRNN(4.5M)
  • 实用通用中文OCR模型
  • 多种预测推理部署方案,包括服务部署和端侧部署
  • 多种文本检测训练算法,EAST、DB、SAST
  • 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE、SRN
  • 可运行于Linux、Windows、MacOS等多种系统

快速体验

上图是超轻量级中文OCR模型效果展示,更多效果图请见效果展示页面

中文OCR模型列表

模型名称 模型简介 检测模型地址 识别模型地址 支持空格的识别模型地址
chinese_db_crnn_mobile 超轻量级中文OCR模型 inference模型 / 预训练模型 inference模型 / 预训练模型 inference模型 / 预训练模型
chinese_db_crnn_server 通用中文OCR模型 inference模型 / 预训练模型 inference模型 / 预训练模型 inference模型 / 预训练模型

文档教程

算法介绍

1.文本检测算法

PaddleOCR开源的文本检测算法列表:

在ICDAR2015文本检测公开数据集上,算法效果如下:

模型 骨干网络 precision recall Hmean 下载链接
EAST ResNet50_vd 88.18% 85.51% 86.82% 下载链接
EAST MobileNetV3 81.67% 79.83% 80.74% 下载链接
DB ResNet50_vd 83.79% 80.65% 82.19% 下载链接
DB MobileNetV3 75.92% 73.18% 74.53% 下载链接
SAST ResNet50_vd 92.18% 82.96% 87.33% 下载链接

在Total-text文本检测公开数据集上,算法效果如下:

模型 骨干网络 precision recall Hmean 下载链接
SAST ResNet50_vd 88.74% 79.80% 84.03% 下载链接

说明: SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:百度云地址 (提取码: 2bpi)

使用LSVT街景数据集共3w张数据,训练中文检测模型的相关配置和预训练文件如下:

模型 骨干网络 配置文件 预训练模型
超轻量中文模型 MobileNetV3 det_mv3_db.yml 下载链接
通用中文OCR模型 ResNet50_vd det_r50_vd_db.yml 下载链接
  • 注: 上述DB模型的训练和评估,需设置后处理参数box_thresh=0.6,unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化

PaddleOCR文本检测算法的训练和使用请参考文档教程中模型训练/评估中的文本检测部分

2.文本识别算法

PaddleOCR开源的文本识别算法列表:

参考DTRB文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:

模型 骨干网络 Avg Accuracy 模型存储命名 下载链接
Rosetta Resnet34_vd 80.24% rec_r34_vd_none_none_ctc 下载链接
Rosetta MobileNetV3 78.16% rec_mv3_none_none_ctc 下载链接
CRNN Resnet34_vd 82.20% rec_r34_vd_none_bilstm_ctc 下载链接
CRNN MobileNetV3 79.37% rec_mv3_none_bilstm_ctc 下载链接
STAR-Net Resnet34_vd 83.93% rec_r34_vd_tps_bilstm_ctc 下载链接
STAR-Net MobileNetV3 81.56% rec_mv3_tps_bilstm_ctc 下载链接
RARE Resnet34_vd 84.90% rec_r34_vd_tps_bilstm_attn 下载链接
RARE MobileNetV3 83.32% rec_mv3_tps_bilstm_attn 下载链接
SRN Resnet50_vd_fpn 88.33% rec_r50fpn_vd_none_srn 下载链接

说明: SRN模型使用了数据扰动方法对上述提到对两个训练集进行增广,增广后的数据可以在百度网盘上下载,提取码: y3ry。 原始论文使用两阶段训练平均精度为89.74%,PaddleOCR中使用one-stage训练,平均精度为88.33%。两种预训练权重均在下载链接中。

使用LSVT街景数据集根据真值将图crop出来30w数据,进行位置校准。此外基于LSVT语料生成500w合成数据训练中文模型,相关配置和预训练文件如下:

模型 骨干网络 配置文件 预训练模型
超轻量中文模型 MobileNetV3 rec_chinese_lite_train.yml 下载链接
通用中文OCR模型 Resnet34_vd rec_chinese_common_train.yml 下载链接

PaddleOCR文本识别算法的训练和使用请参考文档教程中模型训练/评估中的文本识别部分

效果展示

1.超轻量级中文OCR效果展示 more

2.通用中文OCR效果展示 more

3.支持空格的中文OCR效果展示 more

欢迎加入PaddleOCR技术交流群

请扫描下面二维码,完成问卷填写,获取加群二维码和OCR方向的炼丹秘籍

许可证书

本项目的发布受Apache 2.0 license许可认证。

贡献代码

我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。

  • 非常感谢 Khanh TranKarl Horky 贡献修改英文文档
  • 非常感谢 zhangxin(Blog) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题
  • 非常感谢 lyl120117 贡献打印网络结构的代码
  • 非常感谢 xiangyubo 贡献手写中文OCR数据集
  • 非常感谢 authorfu 贡献Android和xiadeye 贡献IOS的demo代码
  • 非常感谢 BeyondYourself 给PaddleOCR提了很多非常棒的建议,并简化了PaddleOCR的部分代码风格。
  • 非常感谢 tangmq 给PaddleOCR增加Docker化部署服务,支持快速发布可调用的Restful API服务。

About

Awesome OCR toolkits based on PaddlePaddle (『飞桨』8.6M超轻量中文OCR模型,支持训练部署全流程)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 67.3%
  • Python 26.7%
  • Java 3.5%
  • Objective-C++ 1.0%
  • CMake 0.6%
  • Objective-C 0.4%
  • Other 0.5%