8000 GitHub - Namalak0145/customer-churn-ml-project: End-to-end ML pipeline for churn prediction
[go: up one dir, main page]

Skip to content

Namalak0145/customer-churn-ml-project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🧠 Customer Churn Prediction (End-to-End ML Project)

This is an industry-style, end-to-end machine learning project to predict customer churn using structured data from a telecom company.

Built with:

  • ✅ Clean Python code
  • ✅ Modular scripts
  • ✅ Reproducible pipeline
  • ✅ Logistic regression model
  • ✅ Confusion matrix + ROC AUC evaluation

📁 Project Structure

``` churn_prediction_project/ ├── data/ # Raw dataset (CSV) ├── scripts/ # Python modules │ ├── eda.py # EDA & visualizations │ ├── preprocess.py # Data cleaning, encoding, scaling │ ├── train_model.py # Model training & saving │ └── evaluate.py # Evaluation & metrics ├── models/ # Saved model (pkl file) ├── main.py # Full pipeline runner ├── README.md # You're here! ```


🔧 Tools Used

  • Python 🐍
  • Pandas, NumPy
  • Scikit-learn
  • Matplotlib, Seaborn
  • Joblib
  • VS Code
  • GitHub

🚀 How to Run

  1. Clone this repo

  2. Create a virtual environment and activate it: ```bash python -m venv venv venv\Scripts\activate ```

  3. Install dependencies: ```bash pip install -r requirements.txt ```

  4. Download the dataset from Kaggle Telco Churn
    Place it in the `data/` folder as `telco_churn.csv`

  5. Run the full pipeline: ```bash python main.py ```


📊 Sample Output

Model Accuracy: ~78%
Includes confusion matrix, ROC-AUC curve, and full classification report.


🌟 Future Enhancements

  • Add a Streamlit-based frontend
  • Save predictions to a dashboard
  • Try other models (XGBoost, SVM, RandomForest)

🙌 Author

Krishna Prasad
ML Learner • Python Enthusiast • Open to Opportunities
GitHub


📜 License

This project is open-source and free to use under the MIT License.

About

End-to-end ML pipeline for churn prediction

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0