E5D3 GitHub - MoonshotAI/kosong: The LLM abstraction layer for modern AI agent applications.
[go: up one dir, main page]

Skip to content

MoonshotAI/kosong

Repository files navigation

Kosong

Kosong is an LLM abstraction layer designed for modern AI agent applications. It unifies message structures, asynchronous tool orchestration, and pluggable chat providers so you can build agents with ease and avoid vendor lock-in.

Kosong means "empty" in Malay and Indonesian.

Installation

Kosong requires Python 3.13 or higher. We recommend using uv as the package manager.

Init your project with:

uv init --python 3.13

Then add Kosong as a dependency:

uv add kosong

Examples

Simple chat completion

import asyncio

import kosong
from kosong.chat_provider.kimi import Kimi
from kosong.message import Message


async def main() -> None:
    kimi = Kimi(
        base_url="https://api.moonshot.ai/v1",
        api_key="your_kimi_api_key_here",
        model="kimi-k2-turbo-preview",
    )

    history = [
        Message(role="user", content="Who are you?"),
    ]

    result = await kosong.generate(
        chat_provider=kimi,
        system_prompt="You are a helpful assistant.",
        tools=[],
        history=history,
    )
    print(result.message)
    print(result.usage)


asyncio.run(main())

Streaming output

import asyncio

import kosong
from kosong.chat_provider import StreamedMessagePart
from kosong.chat_provider.kimi import Kimi
from kosong.message import Message


async def main() -> None:
    kimi = Kimi(
        base_url="https://api.moonshot.ai/v1",
        api_key="your_kimi_api_key_here",
        model="kimi-k2-turbo-preview",
    )

    history = [
        Message(role="user", content="Who are you?"),
    ]

    def output(message_part: StreamedMessagePart):
        print(message_part)

    result = await kosong.generate(
        chat_provider=kimi,
        system_prompt="You are a helpful assistant.",
        tools=[],
        history=history,
        on_message_part=output,
    )
    print(result.message)
    print(result.usage)


asyncio.run(main())

Tool calling with kosong.step

import asyncio

from pydantic import BaseModel

import kosong
from kosong import StepResult
from kosong.chat_provider.kimi import Kimi
from kosong.message import Message
from kosong.tooling import CallableTool2, ToolOk, ToolReturnValue
from kosong.tooling.simple import SimpleToolset


class AddToolParams(BaseModel):
    a: int
    b: int


class AddTool(CallableTool2[AddToolParams]):
    name: str = "add"
    description: str = "Add two integers."
    params: type[AddToolParams] = AddToolParams

    async def __call__(self, params: AddToolParams) -> ToolReturnValue:
        return ToolOk(output=str(params.a + params.b))


async def main() -> None:
    kimi = Kimi(
        base_url="https://api.moonshot.ai/v1",
        api_key="your_kimi_api_key_here",
        model="kimi-k2-turbo-preview",
    )

    toolset = SimpleToolset()
    toolset += AddTool()

    history = [
        Message(role="user", content="Please add 2 and 3 with the add tool."),
    ]

    result: StepResult = await kosong.step(
        chat_provider=kimi,
        system_prompt="You are a precise math tutor.",
        toolset=toolset,
        history=history,
    )
    print(result.message)
    print(await result.tool_results())


asyncio.run(main())

Builtin Demo

Kosong comes with a builtin demo agent that you can run locally. To start the demo, run:

export KIMI_BASE_URL="https://api.moonshot.ai/v1"
export KIMI_API_KEY="your_kimi_api_key"

uv run python -m kosong kimi --with-bash

About

The LLM abstraction layer for modern AI agent applications.

Topics

Resources

License

Stars

Watchers

Forks

Contributors 8

0