# 1. log in to Aaron, source and activate conda environments
source /export02/local/conda/etc/profile.d/conda.sh
# 2. conda envt for Day 1 and 2
conda activate py38env
# 3. conda envt for Day 3 and 4
conda activate py382env
# 4. go to 7T dir
cd /data/mica3/7T_task_fMRI/from_micaopen/micaopen/7T_task_fMRI
# 5. open the GUI
python run_tasks.py
# 6. if running Day 3 or 4, open another terminal and repeat the 1-4 steps then
python test_vlc.py
# Running GUI with mica laptop
source /home/mica/Desktop/conda/etc/profile.d/conda.sh
conda activate py39env
cd 7T_cp
python run_tasks.py
The files from the 7t scan are in /data/dicom/PNC001_Day1_?????
. First, find and claim data using find_mri
and find_mri -claim
script. Then copy 7T data to our folder /data/mica3/BIDS_PNI/sorted/sub-${SUBID}_${ses}/dicoms.
SUBID=PNC001
ses1=01
ses=ses-${ses1}
find_mri ${SUBID}
find_mri -claim ${dicoms_directory}
mkdir /data/mica3/BIDS_PNI/sorted/sub-${SUBID}_${ses}
mkdir /data/mica3/BIDS_PNI/sorted/sub-${SUBID}_${ses}/beh
mkdir /data/mica3/BIDS_PNI/sorted/sub-${SUBID}_${ses}/dicoms
mkdir /data/mica3/BIDS_PNI/sorted/sub-${SUBID}_${ses}/dicoms_sorted
cp -r ${dicoms_directory_returned_from_previous_command} /data/mica3/BIDS_PNI/sorted/sub-${SUBID}_${ses}/dicoms
This step is to sort the dicoms to /data_/mica3/BIDS_PNI/sorted
using the dcmSort
script.
dcmSort /data/mica3/BIDS_PNI/sorted/sub-${SUBID}_${ses}/dicoms /data/mica3/BIDS_PNI/sorted/sub-${SUBID}_${ses}/dicoms_sorted
Once the dicoms are sorted we can run the 7t2bids
to transform all the dicoms into NIFTIS and rename and organize the files accoding to BIDS.
7t2bids -in /data_/mica3/BIDS_PNI/sorted/sub-${SUBID}_${ses}/dicoms_sorted -id ${SUBID} -bids /data_/mica3/BIDS_PNI/rawdata -ses ${ses1}
This step is to copy the behavior data from cognitive tasks.
cp -r /data/mica3/7T_task_fMRI/7T_task_fMRI/logs/sub-${SUBID}/$ses/beh/* /data/mica3/BIDS_PNI/sorted/sub-${SUBID}_${ses}/beh/
Please note that for Day3 we use different folder for now, and the rs-fMRI data is also named as different name (ses-03_2). The script should be therefore replace with:
cp -r /data/mica3/7T_task_fMRI/7T_task_fMRI_NE/logs/sub-${SUBID}/$ses/beh/* /data/mica3/BIDS_PNI/sorted/sub-${SUBID}_${ses}/beh/
cp -r /data/mica3/7T_task_fMRI/7T_task_fMRI_NE/logs/sub-${SUBID}/${ses}2/beh/* /data/mica3/BIDS_PNI/sorted/sub-${SUBID}_${ses}/beh/
You can run any module of the pipeline locally (-mica
), on the mica.q (-qsub
) or all.q (-qall
). But you should always use one of these flags.
- Set singularity environment and directories
#!/bin/bash
# micapipe v0.2.0 "Northern Flicker"
sub=PNC001
ses=01
# Variables
bids=/data/mica3/BIDS_PNI/rawdata/
out=/data/mica3/BIDS_PNI/derivatives
tmp=/host/percy/local_raid/donna/useful/7T_processing/tmp_dir
fs_lic=/data_/mica1/01_programs/freesurfer-7.3.2/license.txt
# run this container
micapipe_img=/data_/mica1/01_programs/micapipe-v0.2.0/micapipe_v0.2.3.sif
- First run the structural processing with the flag
-uni
for MP2RAGE 7T data
#There are two uni images with 0.5mm and 0.7mm, for our purposes, we only process 0.5mm
# call singularity
singularity run --writable-tmpfs --containall \
-B ${bids}:/bids \
-B ${out}:/out \
-B ${tmp}:/tmp \
-B ${fs_lic}:/opt/licence.txt \
${micapipe_img} \
-bids /bids -out /out -fs_licence /opt/licence.txt -threads 6 -sub ${sub} -ses ${ses} \
-proc_structural -uni -T1wStr acq-05mm_UNIT1,acq-05mm_inv-1_MP2RAGE,acq-05mm_inv-2_MP2RAGE
- Here we run a denoising algorithm on the
t1nativepro
to enhance contrast in grey/white matter to facilitate the surface generation.
This step might be incorporated into the pipeline in the future but is still work on progress...
# cd to micapipe subject directory
id1=sub-PNC018/ses-01/
id=sub-PNC018_ses-01
Nifti=${id1}/anat/${id/\//_}_space-nativepro_T1w.nii.gz
outStr=${id/\//_}_space-nativepro_T1w_nlm
outdir=${id1}/anat
bash /host/yeatman/local_raid/rcruces/git_here/MRI_analytic_tools/Freesurfer_preprocessing/denoiseN4 $Nifti $outStr $outdir 15
- Once the denoised data is ready, run the surface processing module with the
-fastsurfer
and-T1
flags
# Variables
bids=/data/mica3/BIDS_PNI/rawdata/
out=/data/mica3/BIDS_PNI/derivatives
tmp=/host/percy/local_raid/donna/useful/7T_processing/tmp_dir
fs_lic=/data_/mica1/01_programs/freesurfer-7.3.2/license.txt
# run this container
micapipe_img=/data_/mica1/01_programs/micapipe-v0.2.0/micapipe_v0.2.3.sif
#make sure to mount this, otherwise, it won't work
t1nlm=${out}/micapipe_v0.2.0/sub-${sub}/ses-${ses}/anat/sub-${sub}_ses-${ses}_space-nativepro_T1w_nlm.nii.gz
# call singularity
singularity run --writable-tmpfs --containall \
-B ${bids}:/bids \
-B ${out}:/out \
-B ${tmp}:/tmp \
-B ${fs_lic}:/opt/licence.txt \
-B ${t1nlm}:/opt/T1.nii.gz \
${micapipe_img} \
-bids /bids -out /out -fs_licence /opt/licence.txt -threads 6 -sub ${sub} -ses ${ses} \
-proc_surf -T1 /opt/T1.nii.gz
c/o Donna Note: CNN generated masks should be applied to Fastsurfer before manual QC
To apply the mask:
# 1. Generate the new binary mask from the CNN inference
mask_inference=/host/percy/local_raid/donna/7T_NNunet/new/nnUNet_results/Dataset500_Segmentation/nnUNetTrainer__nnUNetPlans__3d_fullres/inference/PNC_118.nii.gz
fsdir=/data/mica3/BIDS_PNI/derivatives/fastsurfer/sub-PNC018_ses-01
#2. Erase the mask and the norm
rm ${fsdir}/mri/mask.mgz ${fsdir}/mri/norm.mgz
#3. Replace the mask
mri_convert $mask_inference ${fsdir}/mri/mask.mgz
#4. Multiply the orig_nu.mgz with the inference_mask
mrconvert ${fsdir}/mri/orig_nu.mgz ${fsdir}/mri/orig_nu.nii.gz
fslmaths $mask_inference -mul ${fsdir}/mri/orig_nu.nii.gz ${fsdir}/mri/norm.nii.gz
#5. Convert norm.nii.gz to mgz
mrconvert ${fsdir}/mri/norm.nii.gz ${fsdir}/mri/norm.mgz
#6. Remove files previouslly created by the first run of recon-surf
rm ${fsdir}/mri/wm.mgz ${fsdir}/mri/aparc.DKTatlas+aseg.orig.mgz ${fsdir}/mri/orig_nu.nii.gz
#7. re-run fastsurfer
sub=PNC018
ses=01
/data/mica1/01_programs/MICA-7t/functions/post-qc_fastsurfer.sh -sub ${sub} -ses ${ses} \
-out /data_/mica3/BIDS_PNI/derivatives/fastsurfer
The main outputs of fastsurfer
deep volumetric segmentation are found under the mri/
directory: aparc.DKTatlas+aseg.deep.mgz
, mask.mgz
, and orig.mgz
. The equivalent of freesurfer's brainmask.mgz now is called norm.mgz
.
Warning!! Please make sure your eraser and brush values when editing are set to zero, otherwise, it will create issues on the subsequent steps.
-
The edits should be perfom on the
mask.mgz
file. However, maybe it's easier to correct over the file callednorm.mgz
. Once the edits are perform you can replacemask.mgz
with the binarized version of the correctednorm.mgz
. -
Run the next script after you are done with the edits. It will create new surfaces based on on the edits and generate a file named
qc_done.txt
under the subject's directory e.g.fastsurfer/sub-PNC018_ses-01
.
sub=PNC018
ses=01
/data/mica1/01_programs/MICA-7t/functions/post-qc_fastsurfer.sh -sub ${sub} -ses ${ses} \
-out /data_/mica3/BIDS_PNI/derivatives/fastsurfer
post-qc_fastsurfer.sh details
# Convert from mgz to nifti
mri_convert norm.mgz norm.nii.gz
# --- IF YOU EDIT THE norm.mgz
# Binarize the mask edits
fslmaths norm.nii.gz -thr 1 -uthr 1 -binv mask_edited.nii.gz
# Generate the new mask from the norm.nii.gz edited
fslmaths norm.nii.gz -mul mask_edited.nii.gz -bin mask.nii.gz
# Generate the new norm multiplying the mask
fslmaths norm.nii.gz -mul mask.nii.gz norm.nii.gz
# Replace mask
rm mask.mgz norm.mgz norm.mgz~
mri_convert mask.nii.gz mask.mgz
mri_convert norm.nii.gz norm.mgz
# remove nifitis
rm mask_edited.nii.gz mask.nii.gz norm.nii.gz
# remove files previouslly created by the first run of recon-surf
rm wm.mgz aparc.DKTatlas+aseg.orig.mgz
Run the command recon-surf.sh
using a singularity container to generate the new surfaces:
# Subject id
sub=sub-PNC018
ses=ses-01
# output directory
SUBJECTS_DIR=/data_/mica3/BIDS_PNI/derivatives/fastsurfer
# path to singularity image
fastsurfer_img=/data_/mica1/01_programs/fastsurfer/fastsurfer-cpu-v2.0.0.sif
# freesurfer licence
fs_licence=/data_/mica1/01_programs/freesurfer-7.3.2/
# Number of threads for parallel processing
threads=15
# Remove this variable from `env` because it could lead to an error withing the container
unset TMPDIR
# Run only the surface recontruction with spectral spherical projection (fastsurfer default algorithm instead of freesurfer)
singularity exec --nv -B ${SUBJECTS_DIR}/${sub}_${ses}:/data \
-B "${SUBJECTS_DIR}":/output \
-B "${fs_licence}":/fs \
${fastsurfer_img} \
/fastsurfer/recon_surf/recon-surf.sh \
--fs_license /fs/license.txt \
--t1 /data/mri/orig.mgz \
--sid ${sub}_${ses} --sd /output --no_fs_T1 \
--parallel --threads ${threads}
# Change the outputs permission, in case that someone else has to work on them
chmod aug+wr -R ${SUBJECTS_DIR}/${sub}_${ses}
touch ${SUBJECTS_DIR}/${sub}_${ses}/qc_done.txt
micapipe
second stage modules
bids=/data/mica3/BIDS_PNI/rawdata/
out=/data/mica3/BIDS_PNI/derivatives
tmp=/host/percy/local_raid/donna/useful/7T_processing/tmp_dir
fs_lic=/data_/mica1/01_programs/freesurfer-7.3.2/license.txt
fsdir=/data/mica3/BIDS_PNI/derivatives/fastsurfer/${sub}_${ses}
# run this container
micapipe_img=/data_/mica1/01_programs/micapipe-v0.2.0/micapipe_v0.2.3.sif
#define subject and session
sub=sub-PNC018
ses=ses-01
# call singularity
singularity run --writable-tmpfs --containall \
-B ${bids}:/bids \
-B ${out}:/out \
-B ${tmp}:/tmp \
-B ${fsdir}:${fsdir} \
-B ${fs_lic}:/opt/licence.txt \
${micapipe_img} -bids /bids -out /out \
-sub ${sub} -ses ${ses} -fs_licence /opt/licence.txt -threads 10 \
-post_structural \
-proc_dwi -dwi_rpe /bids/${sub}/${ses}/dwi/${sub}_${ses}_acq-b0_dir-PA_dwi.nii.gz -regSynth \
-GD -proc_func \
-mainScanStr task-rest_echo-1_bold,task-rest_echo-2_bold,task-rest_echo-3_bold \
-func_pe /bids/${sub}/${ses}/fmap/${sub}_${ses}_acq-fmri_dir-AP_epi.nii.gz \
-func_rpe /bids/${sub}/${ses}/fmap/${sub}_${ses}_acq-fmri_dir-PA_epi.nii.gz \
-MPC -mpc_acq T1map -regSynth \
-microstructural_img /bids/${sub}/${ses}/anat/${sub}_${ses}_acq-05mm_T1map.nii.gz \
-microstructural_reg FALSE \
-SC -tracts 40M
micapipe_img=/data_/mica1/01_programs/micapipe-v0.2.0/micapipe_v0.2.3.sif
bids=/data/mica3/BIDS_PNI/rawdata_v2.0.0/
out=/data/mica3/BIDS_PNI/derivatives
fs_lic=/data_/mica1/01_programs/freesurfer-7.3.2/license.txt
tmp=/data/mica2/temporaryNetworkProcessing
sub=sub-PNC018
ses=ses-01
echo "cleaning ${idBIDS} directory"
micapipe_cleanup -sub "${sub}" \
-ses "${ses}" \
-bids '/data/mica3/BIDS_PNI/rawdata' \
-out '/data/mica3/BIDS_PNI/derivatives' \
-post_structural
Module | Cores | 7T-PNI | 3T-MICs | CPU |
---|---|---|---|---|
proc_struct |
15 | 122 ± 16 | 48 ± 10 | yes |
proc_surf |
15 | 188 ± 36 | 961 ± 205 | yes |
post_struct |
15 | 303 ± 41 | 75 ± 13 | yes |
proc_func |
15 | 94 ± 8 | 103 ± 7 | yes |
proc_dwi |
15 | ? | 184 ± 11 | yes |
SC |
15 | ? | 918 ± 299 | yes |
MPC |
10 | 14 ± 3 | 8 ± 2 | no |
GD |
10 | 96 ± 21 | 171 ± 25 | yes |
proc_flair |
10 | - | 2 ± 0 | yes |
Total | - | 818 ± 125 | ± | - |
micapipe |
v0.1.4 |
v0.2.0 |
Difference |
---|---|---|---|
proc_struct |
88 ± 17 | 48 ± 10 | faster |
proc_surf |
961 ± 205 | ~120 | faster |
post_struct |
125 ± 14 | 75 ± 13 | faster |
proc_func |
101 ± 8 | 103 ± 7 | similar |
proc_dwi |
246 ± 37 | 184 ± 11 | faster |
SC |
906 ± 427 | 918 ± 299 | similar |
MPC |
7 ± 1 | 8 ± 2 | similar |
GD |
159 ± 21 | 171 ± 25 | slower |
Total | 2593 ± 730 | 1627 ± 367 | 966 ± 363 |
Directory | size |
---|---|
freesurfer | ~830 |
micapipe/anat | ~820M |
micapipe/dwi | 13G |
micapipe/func | 24G |
micapipe/maps | |
micapipe/surf | |
micapipe/logs | 31M |
micapipe/xfm | 2.6G |
micapipe/QC | 46M |
micapipe/ | ~10-40G |
Directory | size |
---|---|
anat | 495M |
dwi | 1.2G |
fmap | 15M |
func | 7.7G |
Total | 9.4G |
Session | Acquisition | BIDS dir | BIDS name |
---|---|---|---|
01/02/03 | "*anat-T1w_acq-mprage_07mm_UP" | anat | acq-mprage_T1w |
? | "*anat-T1w_acq-mp2rage_07mm_CSptx_INV1" | anat | inv-1_MP2RAGE |
? | "*anat-T1w_acq-mp2rage_07mm_CSptx_INV2" | anat | inv-2_MP2RAGE |
? | "*anat-T1w_acq-mp2rage_07mm_CSptx_T1_Images" | anat | T1map |
? | "*anat-T1w_acq-mp2rage_07mm_CSptx_UNI_Images" | anat | UNIT1 |
? | "*anat-T1w_acq-mp2rage_07mm_CSptx_UNI-DEN" | anat | desc-denoised_UNIT1 |
? | "*cstfl-mp2rage-05mm_INV1" | anat | acq-05mm_inv-1_MP2RAGE |
? | "*cstfl-mp2rage-05mm_INV2" | anat | acq-05mm_inv-2_MP2RAGE |
? | "*cstfl-mp2rage-05mm_T1_Images" | anat | acq-05mm_T1map |
? | "*cstfl-mp2rage-05mm_UNI_Images" | anat | acq-05mm_UNIT1 |
? | "*cstfl-mp2rage-05mm_UNI-DEN" | anat | acq-05mmDenoised_UNIT1 |
01/02/03 | "anat-T1w_acq-mp2rage_05mm_UP_INV1" | anat | acq-inv1_T1map |
01/02/03 | "anat-T1w_acq-mp2rage_05mm_UP_INV2" | anat | acq-inv2_T1map |
01/02/03 | "anat-T1w_acq-mp2rage_05mm_UP_T1_Images" | anat | acq-T1_T1map |
01/02/03 | "anat-T1w_acq-mp2rage_05mm_UP_UNI_Images" | anat | acq-uni_T1map |
a1 | "*anat-flair_acq-0p7mm_UPAdia" | anat | FLAIR |
? | "*anat-flair_acq-07iso_dev3_5SD_UP" | anat | FLAIR |
a1 | "CLEAR-SWI_anat-T2star_acq-me_gre_07iso_ASPIRE" | anat | acq-SWI_T2starw |
a1 | "Romeo_P_anat-T2star_acq-me_gre_07iso_ASPIRE" | anat | acq-romeo_T2starw |
a1 | "Romeo_Mask_anat-T2star_acq-me_gre_07iso_ASPIRE" | anat | acq-romeo_desc-mask_T2starw |
a1 | "Romeo_B0_anat-T2star_acq-me_gre_07iso_ASPIRE" | anat | acq-romeo_desc-unwrapped_T2starw |
a1 | "Aspire_M_anat-T2star_acq-me_gre_07iso_ASPIRE" | anat | acq-aspire_part-mag_T2starw |
a1 | "Aspire_P_anat-T2star_acq-me_gre_07iso_ASPIRE" | anat | acq-aspire_part-phase_T2starw |
a1 | "EchoCombined_anat-T2star_acq-me_gre_07iso_ASPIRE" | anat | acq-aspire_desc-echoCombined_T2starw |
a1 | "sensitivity_corrected_mag_anat-T2star_acq-me_gre_07iso_ASPIRE" | anat | acq-aspire_desc-echoCombinedSensitivityCorrected_T2starw |
a1 | "T2star_anat-T2star_acq-me_gre_07iso_ASPIRE" | anat | acq-aspire_[T2starw,T2starmap] |
02/03 | "*anat-T2star_acq-me_gre_07mm" | anat | acq-me_T2starw |
02/03 | "*T2Star_Images" | anat | acq-me_T2starmap |
03 | "*_MTON" | anat | mt-on_MTR |
03 | "*_MTOFF" | anat | mt-off_MTR |
03 | "*_T1W" | anat | acq-MTR_T1w |
? | "*anat-mtw_acq-MTON_07mm" | anat | acq-mtw_mt-on_MTR |
? | "*anat-mtw_acq-MTOFF_07mm" | anat | acq-mtw_mt-off_MTR |
? | "*anat-mtw_acq-T1w_07mm" | anat | acq-mtw_acq-MTR_T1w |
03 | "*anat-angio_acq-tof_03mm_inplane" | anat | angio |
03 | "*anat-angio_acq-tof_03mm_inplane_MIP_SAG" | anat | acq-sag_angio |
03 | "*anat-angio_acq-tof_03mm_inplane_MIP_COR" | anat | acq-cor_angio |
03 | "*anat-angio_acq-tof_03mm_inplane_MIP_TRA" | anat | acq-tra_angio |
The acquisitions
acq-romeo_part-phase_T2starw
,acq-aspire_part-mag_T2starw
, andacq-aspire_part-phase_T2starw
each have five echoes. The final string will include the identifierecho-
followed by the echo number. For example:acq-aspire_echo-1_part-mag_T2starw
.
Session | Acquisition | BIDS dir | BIDS name |
---|---|---|---|
01/02/03/a1 | "*fmap-b1_acq-tra_p2" | fmap | acq-[anat,sfam]_TB1TFL |
01/02/03/a1 | "*fmap-b1_acq-sag_p2" | fmap | acq-[anat,sfam]_TB1TFL |
01/02/03 | "fmap-fmri_acq-mbep2d_SE_19mm_dir-AP" | fmap | acq-fmri_dir-AP_epi |
01/02/03 | "fmap-fmri_acq-mbep2d_SE_19mm_dir-PA" | fmap | acq-fmri_dir-PA_epi |
Session | Acquisition | BIDS dir | BIDS name |
---|---|---|---|
? | "func-rsfmri_acq-singleE_1" | func | acq-singleE_task-rest_bold |
01/02/03 | "*func-rsfmri_acq-mbep2d_ME_19mm" | func | task-rest_bold |
01 | "*func-epiencode_acq-mbep2d_ME_19mm" | func | task-epiencode_bold |
01 | "*func-epiretrieve_acq-mbep2d_ME_19mm" | func | task-epiretrieve_bold |
01 | "*func-pattersep1_acq-mbep2d_ME_19mm" | func | task-patternsep1_bold |
01 | "*func-patternsep2_acq-mbep2d_ME_19mm" | func | task-patternsep2_bold |
02 | "*func-semantic1_acq-mbep2d_ME_19mm" | func | task-semantic1_bold |
02 | "*func-semantic2_acq-mbep2d_ME_19mm" | func | task-semantic2_bold |
02 | "*func-spatial1_acq-mbep2d_ME_19mm" | func | task-spatial1_bold |
02 | "*func-spatial2_acq-mbep2d_ME_19mm" | func | task-spatial2_bold |
03 | "func-movie1_acq-mbep2d_ME_19mm" | func | task-movies1_bold |
03 | "func-movie2_acq-mbep2d_ME_19mm" | func | task-movies2_bold |
03 | "*func-movies3_acq-mbep2d_ME_19mm" | func | task-movies3_bold |
03 | "*func-movies4_acq-mbep2d_ME_19mm" | func | task-movies4_bold |
? | "*func-semphon1_acq-mbep2d_ME_19mm" | func | task-semphon1_bold |
? | "*func-semphon2_acq-mbep2d_ME_19mm" | func | task-semphon2_bold |
? | "*func-audiobook1_acq-mbep2d_ME_19mm" | func | task-audiobook1_bold |
? | "*func-audiobook2_acq-mbep2d_ME_19mm" | func | task-audiobook2_bold |
? | "*func-sens1_acq-mbep2d_ME_19mm" | func | task-sens2_bold |
? | "*func-sens2_acq-mbep2d_ME_19mm" | func | task-sens1_bold |
? | "*func-slient1_acq-mbep2d_ME_19mm" | func | task-salient_bold |
Each functional MRI acquisition includes three echoes and a phase. The final string will contain the identifier
echo-
followed by the echo number (e.g.,task-rest_echo-1_bold
). Additionally, the stringpart-phase
will be included to identify the phase (e.g.,task-rest_echo-1_part-phase_bold
).
Session | Acquisition | BIDS dir | BIDS name |
---|---|---|---|
01/02/a1 | "*dwi_acq_b0-dir_PA_SBRef" | dwi | acq-b0_dir-PA_sbref |
01/02/a1 | "*dwi_acq_b0-dir_PA" | dwi | acq-b0_dir-PA_dwi |
01/02/a1 | "*dwi_acq_b0_PA_SBRef" | dwi | acq-b0_dir-PA_sbref |
01/02/a1 | "*dwi_acq_b0_PA" | dwi | acq-b0_dir-PA_dwi |
? | "*dwi_acq_b0_PA_1p5iso_SBRef" | dwi | acq-b0_dir-PA_sbref |
? | "*dwi_acq_b0_PA_1p5iso" | dwi | acq-b0_dir-PA_dwi |
01/02 | "*dwi_acq_b2000_90d-dir_AP_SBRef" | dwi | acq-b2000_dir-AP_sbref |
01/02 | "*dwi_acq_b2000_90d-dir_AP" | dwi | acq-b2000_dir-AP_dwi |
01/02 | "*dwi_acq_b700_40d-dir_AP_SBRef" | dwi | acq-b700_dir-AP_sbref |
01/02 | "*dwi_acq_b700_40d-dir_AP" | dwi | acq-b700_dir-AP_dwi |
01/02 | "*dwi_acq_b300_10d-dir_AP_SBRef" | dwi | acq-b300_dir-AP_sbref |
01/02 | "*dwi_acq_b300_10d-dir_AP" | dwi | acq-b300_dir-AP_dwi |
a1 | "*dwi_acq_multib_38dir_AP_acc9_SBRef" | dwi | acq-multib38_dir-AP_sbref |
a1 | "*dwi_acq_multib_38dir_AP_acc9" | dwi | acq-multib38_dir-AP_dwi |
a1 | "*dwi_acq_multib_38dir_AP_acc9_1p5iso_SBRef" | dwi | acq-multib38_dir-AP_sbref |
a1 | "*dwi_acq_multib_38dir_AP_acc9_1p5iso" | dwi | acq-multib38_dir-AP_dwi |
a1 | "*dwi_acq_multib_38dir_AP_acc9_test_SBRef" | dwi | acq-multib38_dir-AP_sbref |
a1 | "*dwi_acq_multib_38dir_AP_acc9_test" | dwi | acq-multib38_dir-AP_dwi |
a1 | "*dwi_acq_multib_70dir_AP_acc9_SBRef" | dwi | acq-multib70_dir-AP_sbref |
a1 | "*dwi_acq_multib_70dir_AP_acc9" | dwi | acq-multib70_dir-AP_dwi |
a1 | "*dwi_acq_multib_70dir_AP_acc9_1p5iso_SBRef" | dwi | acq-multib70_dir-AP_sbref |
a1 | "*dwi_acq_multib_70dir_AP_acc9_1p5iso" | dwi | acq-multib70_dir-AP_dwi |
Abbreviation | Description |
---|---|
AP | Anterio-Posterior |
PA | Postero-anterior |
mtw | Magnetic transfer weighted |
sfmap | Scaled flip angle map |
tof | Time of flight |
multib | Multi shell N directions |
semphon | Semantic-phonetic |
romeo | Rapid opensource minimum spanning tree algorithm |
aspire | Combination of multi-channel phase data from multi-echo acquisitions |
-
Eckstein K, Dymerska B, Bachrata B, Bogner W, Poljanc K, Trattnig S, Robinson SD. Computationally efficient combination of multi‐channel phase data from multi‐echo acquisitions (ASPIRE). Magnetic resonance in medicine. 2018 Jun;79(6):2996-3006. https://doi.org/10.1002/mrm.26963
-
Dymerska B, Eckstein K, Bachrata B, Siow B, Trattnig S, Shmueli K, Robinson SD. Phase unwrapping with a rapid opensource minimum spanning tree algorithm (ROMEO). Magnetic resonance in medicine. 2021 Apr;85(4):2294-308. https://doi.org/10.1002/mrm.28563
-
Sasaki M, Shibata E, Tohyama K, Takahashi J, Otsuka K, Tsuchiya K, Takahashi S, Ehara S, Terayama Y, Sakai A. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease. Neuroreport. 2006 Jul 31;17(11):1215-8. https://doi.org/10.1097/01.wnr.0000227984.84927.a7